
Formal Methods in Computer-Aided Design 2023

Towards Compositional
Hardware Model Checking Certification

Emily Yu∗

emily.yu2019@gmail.com
Nils Froleyks∗

nils.froleyks@jku.at
Armin Biere†

biere@cs.uni-freiburg.de
Keijo Heljanko‡§

keijo.heljanko@helsinki.fi

∗Johannes Kepler University, Linz, Austria
†University of Freiburg, Freiburg, Germany

‡Helsinki Institute for Information Technology and
§University of Helsinki, Helsinki, Finland

Abstract—In this paper, we revisit and formalize temporal
decomposition, as one of the most basic, widely-used and effective
preprocessing techniques in hardware model checking. The main
contribution is a certification framework for hardware model
checking using temporal decomposition. Our approach enables
generation of a single inductive invariant in a compositional
way using inductive invariant certificates provided by existing
certifying model checkers on the result of preprocessing a model
through temporal decomposition. We implement and evaluate the
method on hardware model checking competition benchmarks.
The experiments confirm the effectiveness of temporal decompo-
sition. The proposed certification approach makes it feasible to
generate a generic proof for model checking and preprocessing.

I. INTRODUCTION

The study of compositional reasoning for safety-critical
systems can be traced back to a few decades ago [1]. Compo-
sitional model checking breaks the model checking procedure
down into several smaller problems, thus enabling faster
and more efficient verification. For example, preprocessing
techniques are widely used in current industry in combination
with standard model checking algorithms.

Among these, temporal decomposition [2] is considered
important in industrial hardware model checking [3], [4].
It computes an over-approximation of reachable states to
efficiently find a set of transient signals that stabilize to their
constant values during any possible execution. A sequence
of transformations is applied to the design under verification,
including time-shifting it from the reset states and elimination
of transient logic. The verification problem thus consists of
verifying that the property holds within the time frame the
design has been shifted, and that the transformed circuit is
safe. For the latter an existing model checker that can provide
certificates is employed, such as k-induction [5], symbolic
model checking using BDDs [6], and IC3/PDR [7].

While progress in verification using compositional reason-
ing continues, the number of certifiable approaches are lim-
ited [8], [9]. One central objective of verification is to develop
a standardised method to generate machine-checkable proofs
for certifying model checking [9]. This is especially crucial
in safety-critical industrial environments, as a faulty processor

Funded by FWF project W1255-N23, the LIT AI Lab funded by the State
of Upper Austria, and Academy of Finland project 336092.

design can be extremely costly for a hardware manufacturer.
Even though a number of single-engine model checkers are
able to generate proofs, a key difficulty in this area is to
produce a single generic certificate for complex verification
pipelines. Furthermore, as in SAT solving [10]–[12], proof
generation becomes rather involved when using preprocessing
techniques, as the proofs from the preprocessors need to be
lifted to proofs for the original model checking problem. This
problem is exacerbated by the fact that the certificate given by
a model checker can be more complex than a simple inductive
invariant [8], [9]. For these reasons there is currently no viable
industrial-strength model checker that provides certificates.

In this paper, we make a contribution toward this direction
by revisiting temporal decomposition and developing a novel,
practical, compositional framework for certifying the model
checking result of the base engine and the employed prepro-
cessing technique in a single proof. The distinguishing feature
of our approach is to generate a single witness circuit as a
certificate for the entire verification procedure, while related
work [13], [14] relies on conceptually more complex deductive
frameworks or has not been applied to industrial relevant
hardware model checking problems that we are targeting. The
approach in [15] also uses a deductive proof system for tem-
poral decomposition that requires multiple independent parts
to be checked, whereas our goal is to design a format such that
only one witness circuit is checked, instead of a multi-stage
proof. In theory, a single semantically simple proof format
can be much easier to check by both untrusted and formally
verified certificate checkers. Proof formats and checkers which
follow the actual reasoning more closely will require to be
adapted for every new technique used in the model checker. In
contrast to [15], [16] that the underlying certificate provided by
base model checkers is an inductive invariant, a witness circuit
is more general. Moreover, different from [13]–[15], [17] as
well as [18] which aims at handling more expressiveness,
our work focuses on certifying safety properties which is the
most prominent part in hardware model checking competitions
and arguably in an industrial setting too. Additionally others
have focused on either verifying model checkers themselves or
lifting it directly to theorem proving [19]–[21]. Fully verifying
model checkers can be a heavy task, as an update in the

https://doi.org/10.34727/2023/isbn.978-3-85448-060-0 12 This article is licensed under a Creative
Commons Attribution 4.0 International License

Authorized licensed use limited to: Universitaet Linz. Downloaded on October 04,2025 at 14:02:25 UTC from IEEE Xplore.  Restrictions apply. 



C model checker C′

simulation
checker

inductive
invariant checker

φtransφreset φprop φconsistφinit φconsec

strat.
check

certificate checker

Fig. 1: An outline of the certification flow where C ′ is the
certificate generated from the model checker (formally defined
in Def. 12) and C is the original circuit. The certificate checker
consists of three components and internally generates six SAT
formulas and calls an underlying SAT solver.

optimization techniques often requires the entire procedure
to be verified again. Lastly, similar problems have also been
addressed in the context of software verification [22], [23].

The resulting certificate in our framework can be checked
via six simple SAT checks and a polynomial check follow-
ing the certification flow established in [8] as illustrated in
Fig. 1, thus reducing trusting a PSPACE hard model check-
ing flow into verifying a simple certificate circuit in co-NP.
Our compositional approach breaks the formal proofs into
manageable parts while enabling more certifiable techniques.
For demonstration we focus on the k-induction algorithm as
the base engine for the transformed circuit that provides a
more complex certificate, as well as a BDD-based model
checker. The reason is that our proposed flow requires model
checkers to provide certificates for models with reset functions,
which is technically rather involved to add to existing complex
multi-engine model checkers, but this is a feature we want to
encourage to be implemented.

Based on this, we have implemented a prototype certify-
ing hardware model checker CHMC that performs temporal
decomposition and provides a certificate that can be verified
using a SAT solver. We also present two optimisations for
detecting transient logic in a circuit. The experiments show
our tool is able to solve 29 (out of 818) additional instances
enabling temporal decomposition with the k-induction base
engine, and an additional of 39 instances using the BDD
backend. Our method can produce certificates for all instances
solved by the model checker, and effectively verify them.

II. BACKGROUND

This paper extends the set of certifiable model checking
techniques thus adopts the certificate format from [8], [9].

We assume a set of Boolean variables V . A literal l is either
a variable l ∈ V or its negation. We denote B(V) as the
set of all Boolean functions over V conveniently represented
and with formulas (Boolean expressions). A cube is a non-
contradictory set of literals. For f ∈ B(V) we write f |l to
denote the formula after replacing all occurrences of l in
f with ⊤ and all occurrences of ¬l with ⊥. This naturally

extends to cubes (interpreted as conjunction of literals). We
also write vars(f) to denote the variables that occur in f .

In the following we use a symbolic representation of
hardware circuits matching the notation of [8] summarised
below. This definition has the advantage of being highly
compatible with the AIGER format [24] used for hardware
model checking in practice. Note that we use “⇒ ” for
semantic implication, “→ ” for syntactic implication and “≡ ”
for semantic equivalence cf. [9].

Definition 1 (Circuit [9]). A circuit is a tuple C =
(I, L,R, F, P ) where I is a set of Boolean input variables, L is
a set of Boolean latch variables, R = {rl(L) ∈ B(L) | l ∈ L}
is a set of reset functions, F = {fl(I, L) ∈ B(I, L) | l ∈ L}
is a set of transition functions, and P (I, L) ∈ B(I, L) is the
property formula.

We write R(L′) =
∧

l∈L′
(l ≃ rl(L)) for some L′ ⊆ L, where

“≃ ” is used for syntactic equivalence [25]. Furthermore Li

denotes a copy of L in the temporal direction, thus Um =∧
i∈[0,m)

(Li+1 ≃ F (Ii, Li)) denotes an unrolling of length m.

Definition 2 (Stratified circuit [8]). Given a circuit C =
(I, L,R, F, P ) with R = {rl | l ∈ L}. The dependency graph
GR has latch variables L as nodes and contains a directed
edge (a, b) from a to b iff a ∈ vars(rb) and rb ̸= b. The circuit
is stratified iff GR is acyclic.

Definition 3 (Stratified simulation [8]). Given two stratified
circuits C = (I, L,R, F, P ) and C ′ = (I, L′, R′, F ′, P ′)
where L ⊆ L′. The circuit C is simulated by C ′ iff: (i)
rl(L) ≡ r′l(L

′) for l ∈ L; (ii) fl(I, L) ≡ f ′
l (I, L

′) for l ∈ L;
and (iii) P ′(I, L′) ⇒ P (I, L).

Intuitively, a circuit is stratified if its reset functions are
acyclic. The stratification assumption allows the designed
certificate in [8] to be checked by simple SAT checks instead
of having a one-alternation QBF check as in [9]. The stratified
simulation relation can be therefore verified via three SAT
checks as stated in the definition above and one polynomial
time check for stratification of reset functions of C ′.

Definition 4 (k-induction [9]). Given a circuit C, P is k-
inductive in C iff, (i) Uk−1 ∧ R(L0) ⇒

∧
i∈[0,k)

P (Ii, Li); and

(ii) Uk ∧
∧

i∈[0,k)

P (Ii, Li) ⇒ P (Ik, Lk).

We make use of k-induction [5] formulated as a combination
of BMC check and a consecution check. It generalizes the
concept of checking an inductive invariant which is equivalent
to 1-induction where the invariant is simply the property.

III. OVERVIEW

Temporal decomposition helps to simplify model checking
by removing parts of the circuit that are only needed for
initialisation. Using it as a preprocessing technique, the model
checking problem is decomposed into smaller sub-problems.

45

Authorized licensed use limited to: Universitaet Linz. Downloaded on October 04,2025 at 14:02:25 UTC from IEEE Xplore.  Restrictions apply. 



1110 1100 1000 0000 0100 0010 1010 0110

0001 0011 0101 0111 1001 1011 1101 1111

Fig. 2: State space of a 4-bit shift counter.

A series of transformation is applied to the circuit by time-
shifting it and removing transient signals found via an over-
approximation of the reachable states. We begin with an
example to show that it can be quite useful and complementary
to model checking techniques such as k-induction.

Example 1 (Shift Counter). Figure 2 shows the state transition
diagram of the considered circuit, i.e., a shift counter over 4
bits, with an initial state 1110, where the least significant bit
controls the operational mode and never changes. When this
bit is set to 0, a left shift is performed; if it is set to 1, the
other bits operate as a three-bit binary counter.

Consider the property that at least one bit is zero. As the
diagram shows, it is 8-inductive (as the single bad state with
all bits one is not reachable, but the longest path only having
it as last state has 8 states). In the more general case, with
an arbitrary large number of bits n, the inductive depth k is
exponentially large (2n−1) in n, for a k-induction-based model
checker. The size of the certificate for k-induction using only
the approach presented in [8] without temporal decomposition
would then be in O(k · n) and thus exponential too.

However, if we consider only the reachable part of the state
space, all bits are transient signals as they all eventually sta-
bilise to zero. Therefore we can use temporal decomposition to
simplify the design by time-shifting it and removing transient
logic. The time-shifting depth (later we call it the duration)
is linear in n as it grows linearly in the number of bits. In
this particular scenario, the model checking problem for the
terminal part becomes trivial. We only need a BMC check for
the initial n−1 time frames. This leaves us with the problem:
how to certify model checking with temporal decomposition?

The overall certification approach we propose is outlined in
Fig. 3. For this example suppose we have a set of transient
signals found that stabilise to constant values with duration 3.
In practice the time-shifting namely circuit-forwarding of a
design is implemented implicitly by computing the successor
states originating from reset, however, with the objective of
producing elegant and compositional proofs, we construct
intermediate circuits forwarded by one transition only.

At each forwarding, the circuit gets unrolled by one time
step from reset. For the sequence of circuits C0, ..., C3, a
bounded model checker is used to verify that all initial states
are good states. The last forwarded circuit along the pipeline
(C3) is simplified with transient elimination to obtain the factor
circuit C ′

3, which is given to a base model checker (e.g., k-

induction, BDD or IC3/PDR) that also produces a certificate
(i.e., a witness circuit [8]). We now construct a composite
witness circuit certifying both the preprocessing algorithm for
the transients and the safety property. We then build a sequence
of backward witness circuits while adding the BMC check for
the initial states each time. At each step Wi is a witness circuit
of Ci. In the end, we get W0 as the final witness circuit with
an inductive invariant for the entire procedure.

The final witness can be checked by an external proof
checker [8]. If the check passes, the original circuit is guaran-
teed to be safe. It is thus not necessary to trust the correctness
of the presented framework nor its implementation. The formal
proofs provided in the following sections serve to show that if
the original circuit is safe, a valid certificate can be produced.

IV. TEMPORAL DECOMPOSITION

As one of our contributions we revisit temporal decom-
position by defining a precise formalism and proving its
correctness, which is an improvement over the theory in [2].
We show that our method is complete and will provide a valid
certificate whenever temporal decomposition is employed.

In practice, temporal decomposition uses ternary simula-
tion [26] to find transient signals [2]. As generalization we
define cube semantics and the notion of cube simulation, that
subsumes ternary simulation as well as other optimisations.
We make use of this in our implementation (see Section VI).

Definition 5 (Cube simulation). Given a circuit C = (I, L,R,
F, P ), then a cube simulation c0, · · · , cδ, · · · , cδ+ω for δ, ω ∈
N is a sequence of cubes over latch variables L such that,

• R(L) ⇒ c0.
• For i ∈ [0, δ + ω) we require validity of ci ∧ (L′ ≃

F (I, L)) ⇒ c′i+1 (L′ and c′i+1 denote primed copies).
• In addition, it is called a cube lasso iff cδ+ω ∧ (L′ ≃

F (I, L)) ⇒ c′δ.

Note that for δ = 0 and ω = 0, it would simply be a self-
loop. This symbolic definition of cube simulation could be
implemented directly by a symbolic engine. However, ternary
simulation is more appropriate for industrial benchmarks [2].

For brevity we omit (the natural) formal definitions here,
but remark that a “bounded version” of cube simulation
is subsumed by model checking and in particular ternary
simulation does not yield more transients than those produced
by Boolean constraint propagation in the SAT solver. As a
result, for SAT based bounded model checkers (and therefore

46

Authorized licensed use limited to: Universitaet Linz. Downloaded on October 04,2025 at 14:02:25 UTC from IEEE Xplore.  Restrictions apply. 



S0 S1 S2 S′
3
. . .S0 S1 S2 S3

. . .

W3 W ′

S0 S1 S2
. . .

W2

S0 S1
. . .

W1

S0
. . .

W0

S0 S1 S2 S′
3S0 S1 S2 S3

C3 C ′

S0 S1 S2

C2

S0 S1

C1

S0

C0

Forward
Circuit

Backward
Witness

Factor
Circuit

Composite
Witness

Witness
Circuit

S3S3S3 S2S2S1

Fig. 3: An outline of our certification framework (for duration of 3).

k-induction-based model checkers on satisfiable instances),
there is hardly any gain using temporal decomposition.

Proposition 1. Bounded model checking subsumes bounded
cube simulation.

Under cube simulation, transient signals can be found
by identifying those that stay constant from a certain point
onwards along a cube lasso.

Definition 6 (Transients via cube lasso). Given a circuit C and
a cube lasso c0, · · · , cδ, · · · , cδ+ω . A set of transient signals T
is a cube over latches that satisfies ci ⇒

∧
l∈T

l for i ∈ [δ, δ+ω].

For the purpose of temporal decomposition, we could al-
ways time-shift the circuit by δ, however, it can make model
checking of the final circuit easier to reduce this value as much
as possible. For a set of transients found via cube lasso, we
formally define the unstable duration of a circuit. It is the
smallest value for which the last transient becomes constant.

Definition 7 (Unstable duration). Given a cube lasso
c0, · · · , cδ, · · · , cδ+ω and a set of transients T , the unstable
duration d ≤ δ is the lowest index that satisfies ci ⇒

∧
l∈T

l for

i ∈ [d, δ + ω].

For the rest of the paper, we simply refer to it as duration.
By taking the disjunction of all cubes from the duration

onwards, we get an over-approximation of all the reachable
states in the time-shifted circuit.

Definition 8 (Cube loop invariant). Given a cube lasso
c0, · · · , cδ, · · · , cδ+ω , and a set of transients T with a duration
d. The cube loop invariant ϕT is defined as:

ϕT =
∨

i∈[d,δ+ω]

ci.

An immediate observation is that the cube loop invariant
is simply the inductive invariant that implies the stabilised
transients in the time-shifted circuit by the duration. We
formalise this in the following lemma.

Lemma 1. Given a circuit C, a cube lasso
c0, · · · , cd, · · · , cδ, · · · , cδ+ω , and a set of transients T
with a duration d. Let C ′ be the resulting circuit of applying
circuit forwarding to C iteratively d times. The cube loop
invariant is an inductive invariant of C ′ for

∧
l∈T

l.

To formalize “time shifting” we introduce the notion of
stable variables which have the same values throughout the
entire execution and do not appear in any other transition
function nor in the property.

Definition 9 (Stable variable). Given a circuit C =
(I, L,R, F, P ), the set Λ ⊆ L is a set of stable variables
if for all l ∈ Λ, the following holds: (i) fl = l; (ii) for all
l′ ∈ L\{l}, l /∈ vars(fl′); and (iii) l /∈ vars(P ).

This simple purely syntactic definition of stable variables
is the weakest condition that allows us to avoid a spurious
exponential blowup during circuit forwarding (Def. 10). Note
that here identifying stable variables is a simple polynomial
time check. Replacing it with stronger conditions, such as
cone-of-influence reduction [27], after every forward circuit
construction would potentially yield a smaller certificate,
which we leave to future work.

A forward circuit is constructed based on a given circuit
by copying the set of active variables (i.e., non-stable), and
updating the resets of the original active variables to one
transition ahead using oracles (uninitialised latches) instead
of inputs. The formal definition is given below.

Definition 10 (Forward circuit). Given a circuit C =
(I, L,R, F, P ) with a set of stable variables Λ ⊆ L (we refer
to A = L\Λ as the set of active variables). The forward circuit
C ′ = (I, L′, R′, F ′, P ) is defined as follows:

• L′ = L∪ I ′∪A′ where I ′ and A′ are copies of I and A.
• R′ = {r′l | l ∈ L′}:

– For l ∈ Λ ∪A′, r′l = rl(I,Λ ∪A′).
– For l ∈ I ′, r′l = l.
– For l ∈ A, r′l = fl(I

′, A′).

• F ′ = {f ′
l | l ∈ L′} :

– For l ∈ L, f ′
l = fl(I, L).

– For l ∈ I ′ ∪A′, f ′
l = l.

An alternative to Def. 10 is to simply copy all latches when
forwarding a circuit, however, the resulting circuit would be
exponential in the duration when doing so iteratively. In the
following we show that the forward circuit is stratified

Lemma 2. Given a stratified circuit C. Its forward circuit C ′

is also stratified.

Proof. Based on the reset function definition in Def. 10, the
reset functions of Λ ∪ A′ are the same as in R(L), which

47

Authorized licensed use limited to: Universitaet Linz. Downloaded on October 04,2025 at 14:02:25 UTC from IEEE Xplore.  Restrictions apply. 



are acyclic. The variables in I ′ are uninitialised, thus do not
depend on the rest of the variables. As R′(A) only uses
variables distinct from A, we conclude C ′ is stratified.

For the forward circuit, we proceed to simplify it by
removing the set of transients that have been found. The
resulting simplified circuit (namely factor circuit) is formally
defined in the following definition.

Definition 11 (Factor circuit). Given a circuit C =
(I, L,R, F, P ) and a set of transients T from cube simulation.
Its factor circuit is a tuple C|T = (I, L′, R′, F ′, P ′) such that,

• L′ = L\vars(T ).
• R′ = {rl|T | l ∈ L′}.
• F ′ = {fl|T | l ∈ L′}.
• P ′ = P |T .

In the following proposition, we state that the conjunction
of the factor property P |T and

∧
l∈T

l (i.e., the transients are

constant) implies the original property. The same follows for
reset and transition functions.

Proposition 2. (P |T ∧
∧
l∈T

l) ⇒ P , (R|T ∧
∧
l∈T

l) ⇒ R, and

(F |T ∧
∧
l∈T

l) ⇒ F.

An important observation we make is that the inductive
depth of the property does not increase after temporal de-
composition, which is later confirmed in our experimental
evaluation. However, we have already seen in Example II
an exponential reduction in the inductive depth. We formally
prove it and summarise it in the following theorem, which
follows directly from Lemmas 3, and 4.

Theorem 1. Given a circuit C where the property is k-
inductive. Let C|T be the circuit resulting from temporal
decomposition of C. Its property is k-inductive.

Lemma 3. Given a circuit C = (I, L,R, F, P ) where the
property is k-inductive. Let C ′ = (I, L′, R′, F ′, P ′) be the
factor circuit. P ′ is k-inductive in C ′.

Proof. We do a proof by contradiction by assuming P ′ is not
k-inductive in C ′. First we consider the case where the BMC
check fails in C ′ (i.e., U ′

k−1 ∧ R′(L′
0) ∧ ¬

∧
i∈[i,k)

P ′(Ii, L
′
i)

has a satisfying assignment). By Lemma 1, the transients stay
constant in C, and by Propositions 2, we can construct a
satisfying assignment for Uk−1 ∧ R(L0) ∧ ¬

∧
i∈[i,k)

P (Ii, Li).

This contradicts our assumption. The second scenario where
the consecution check fails in C ′ follows the same logic.

Lemma 4. Given a circuit C = (I, L,R, F, P ) where the
property is k-inductive. Let C ′ = (I, L′, R′, F ′, P ) be the
forward circuit. P is k-inductive in C ′.

Proof. We provide a proof by contradiction assuming P is
not k-inductive in C ′. Similarly we assume R′(L′

0)∧U ′
k−1 ∧

¬
∧

i∈[0,k)

P (Ii, Li) has a satisfying assignment. By Def. 10 the

0
0 1

11
0 1

0 0
0 1

11
0 1

00
0

0
0

0
0

0
0 0 1

0
0

0
0

0 1
0
0

0
0

0
0 1

11
0 1

00
0

0
0

0
0

0
0

10 1 1

0
0 1

11
0 1

00
0

0
0

0
0

0
0

00

0
0

0
0

00

0 0

01

Forward
Circuit

Backward
Witness

Factor
Circuit

Composite
Witness

0
0

0

01
1
1

1

Fig. 4: An illustration of the overall certification flow for
the delayed clock example. Initial states are marked with an
additional arrow; bad states are marked gray. In the original
circuit (top left), the lower bit is oscillating, and the upper bit
is the enabler bit.

same satisfies R(L0) ∧ Uk ∧ ¬
∧

i∈[1,k]

P (Ii, Li). This implies

that a bad state is reachable from the initial states thus
contradiction. We then consider the consecution check fails in
C ′ such that U ′

k∧
∧

i∈[0,k)

P (Ii, Li)∧¬P (Ik, Lk) has a satisfying

assignment. By Def. 10 the transition function stays the same
for the common latches thus the same assignment satisfies the
formula Uk∧

∧
i∈[0,k)

P (Ii, Li)∧¬P (Ik, Lk). Therefore we have

reached a contradiction.

V. CERTIFICATION

In this section, we present a compositional certification
framework that is complete. Along the model checking pro-
cedure with temporal decomposition, a certificate can be
automatically generated by the model checker following the
format defined in this section.

Example 2. Consider the scenario of a delayed clock (Fig. 4).
The clock has one bit (the bottom bit in the diagram) that
oscillates between zero and one after the enabler bit (first bit)
is set to one. There is only one initial state where the clock is
set to zero and enabler bit not set. A state is bad if the clock
is high without being enabled.

After preprocessing, a base model checker is called for
verifying the factor circuit (In Fig. 4 the property of the factor
circuit is already an inductive invariant thus the factor circuit
is simply the certificate). It is required to provide a certificate
that is then used to build the final certificate. We give a formal
definition of the general certificate format below.

Definition 12 (Witness circuit). Given a circuit C, a witness
circuit W = (I,M, S,G,Q) of C satisfies the following:

• W simulates C under stratified simulation relation.
• Q is an inductive invariant in W .

Since the method is compositional, with the witness circuit
of the factor circuit produced from the model checker, we
combine it with the loop invariant for cube lasso to construct
a composite witness circuit that certifies both.

48

Authorized licensed use limited to: Universitaet Linz. Downloaded on October 04,2025 at 14:02:25 UTC from IEEE Xplore.  Restrictions apply. 



W ′W

C|TC

Factor
Circuit

Composite
Witness

L \ T
L′

I

L \ T
L′

I . . .
M ′

I

I . . .
M

L

I L

Fig. 5: Constructing composite witness circuit.

Definition 13 (Composite witness circuit). Given a strat-
ified circuit C = (I, L,R, F, P ) with the cube loop in-
variant ϕT for the set of transients T , and its factor
circuit C|T = (I, L′, R′, F ′, P ′) with its witness circuit
W ′ = (I,M ′, S′, G′, Q′). The composite witness circuit
W = (I,M, S,G,Q) is constructed as follows:

• M = L ∪ (M ′\L′).
• S = {sl | l ∈ M}:

– For l ∈ L, sl = rl;
– For l ∈ M ′\L′, sl = s′l.

• G = {gl | l ∈ M} :

– For l ∈ L, gl = fl;
– For l ∈ M ′\L′, gl = g′l.

• Q = ϕT (L) ∧Q′(I,M ′).

Intuitively, in the composite witness circuit we add back
the previously eliminated transients. The new property simply
combines the cube loop invariant from cube simulation and
the property of the witness circuit of the factor circuit, which
is an inductive invariant in the composite witness circuit.

Theorem 2. Given a stratified circuit C, its factor circuit C|T
with an inductive invariant ϕT , a witness circuit W ′ of C|T ,
and the composite witness circuit W . Then W is a witness
circuit of C.

Proof. We show that W simulates C. The factor circuit C|T is
obviously stratified as C is stratified by Def. 11. The witness
circuit W ′ is also stratified. The reset functions of L remain
the same in W , and R(L) do not contain latches in M ′ \ L′.
Thus W is stratified. Based on Def. 13, the common latches
L ⊆ M and inputs are the same in both circuits. As the reset
functions and transition functions of L remain the same, this
satisfies the reset check and transition check. Since W ′ is a
witness of C|T , we have Q′ ⇒ P ′, where P ′ ≡ P |T by
Def. 11. Since ϕT is an inductive invariant for transients and
by Lemma 1, we have ϕT ⇒

∧
l∈T

l. By Proposition 2, we have

Q ⇒ P. Therefore W simulates C.
We then show the BMC check passes (S(M) ⇒ Q(I,M))

by assuming that S(M) and thereby R(L) ∧ S′(M ′ \ L′)
holds, and shall proceed to the conclusion ϕT (L)∧Q′(I,M ′),
by Def. 13. We begin with R(L) and may deduce ϕT (L)
immediately since Lemma 1 applies to C and the circuit is
in its reset state.

From this point on, our attention will be on the subset of
L that is free of transients, L′ by Def. 11. We have R(L′) =
R′(L′) again by Def. 11, and then R′(L′) = S′(L′) since
W ′ simulates C|T , which by Def. 3 implies the resets to be
the same. We combine this with the second half of our initial
assumption to arrive at S′(M ′). The witness circuit W ′ is
therefore at reset, and its inductive invariant Q′(I,M ′) holds.
We conclude with Q(I,M).

We make the observation that G(I, L) ≡ F (I, L), F (I, L \
T ) ≡ F ′(I, L\T ) ≡ G′(I, L\T ) by Def. 12 and Def. 11. The
latter together with Def. 13 gives us G(I,M ′) ≡ G′(I,M ′).
Assume a fixed satisfying assignment for V1 ∧ Q(I0,M0),
where V1 is the unrolling of length 1 in W . By the observation
above, this also satisfies U1 and V ′

1 which are the unrollings
of C and W ′ respectively. By Def. 13 the assignment satisfies
ϕT (L0)∧Q′(I0,M

′
0) which are inductive invariants in C and

W ′ respectively. We thus have ϕT (L1) ∧ Q′(I ′1,M
′
1). As we

have shown the inductiveness of Q with the BMC check and
consecution check, together with the simulation relation, we
conclude W is a witness circuit of C.

We now introduce backward witness circuit built based on
a given witness circuit for one backward step, as illustrated
in Fig. 6. Intuitively, at each backward step, the backward
witness circuit certifies the BMC check for the initial states of
the corresponding circuit C while maintaining and delaying
the behaviours of the given witness circuit W ′ by one step.

This is achieved by using one bit b which becomes constant
true exactly one step after initialisation. At reset, W has the
same values as C, with the additional latches holding the
reset values from W ′; once b is set, it operates as W ′. Recall
that when constructing the forward circuit, an additional copy
of inputs and active latches is added for copying the initial
values of those in the given circuit. Since input values are non-
deterministic, this needs to be recovered when constructing W
such that the inputs are copied to ensure matching values.

Definition 14 (Backward witness circuit). Given a stratified
circuit C = (I, L,R, F, P ), and its forward circuit C ′ =
(I, L′, R′, F ′, P ). Let W ′ = (I,M ′, S′, G′, Q′) be the witness
circuit C ′. The backward witness circuit W = (I,M, S,G,Q)
is defined as follows:

1) M = M ′ ∪ {b}.
2) S = {sl | l ∈ M} such that:

• For l ∈ L, sl = rl.
• For l ∈ M ′\L, sl = s′l.
• sb = ⊥.

3) G = {gl | l ∈ M} such that:
• For l ∈ L, gl = fl.
• For l ∈ M ′\L′, gl = ite(b, g′l, s

′
l).

• For l′ ∈ L′\L, gl′ = ite(b, l′, l) where l is the literal
with the same index in I ∪ A as l′ in I ′ ∪ A′ (=
L′\L).

• gb = ⊤.

4) Q =
∧

i∈[0,3]

qi, where

49

Authorized licensed use limited to: Universitaet Linz. Downloaded on October 04,2025 at 14:02:25 UTC from IEEE Xplore.  Restrictions apply. 



• q0 = P (I, L).
• q1 = b → Q′(I,M ′).
• q2 = ¬b → R(L).
• q3 = ¬b → S′(M ′\L).

We can thus obtain a witness circuit that certifies (i)
the property holds at reset for forward circuits and (ii) the
transformed property holds in the factor circuit. In an iterative
manner eventually we can construct a witness circuit for the
entire pipeline illustrated in Fig. 3. Here the property consists
of four subproperties: q0 is the original property; q1 states that
the property from W ′ needs to hold when b is set; q2 states
that b is false only at initialisation; and q3 states that all latches
except those in L need to hold the reset values as in W ′.

W ′W

C ′C

Forward
Circuit

Backward
Witness

Λ, A
L

I ′, A′
L′ M ′

. . . bI

M
Λ, A

L
I ′, A′

L′ M ′

. . .I

Λ, A
L

I ′, A′
L′

IΛ, A
L

I

Fig. 6: An illustration of the latch contents of circuits. C is a
time-shifted circuit with latches of Λ (stable variables) and A
(active variables). We obtain C ′ by adding a copy of I ′ and A′

which are used for unrolling the initial states. W ′ is the witness
circuit simulating C ′. In addition to the common latches L′,
M ′ can also include a set of unknown latches (potentially
generated from the model checker). W is the backward witness
circuit, containing all latches from M ′ and an additional bit b
used for an initialisation step.

By Def. 12 the backward witness needs to pass the six SAT
checks for the stratified simulation relation and the witness
inductiveness, as well as the stratification check of its reset
functions. We summarise this in the following theorem.

Theorem 3. Given a stratified circuit C where the property
holds in all reset states, the forward circuit C ′ with its witness
circuit W ′, and the backward witness circuit W as defined in
Def. 14. Then W is a witness circuit of C.

Proof. First we show W is stratified. By Def. 14, S(L) ≡
R(L), therefore stratified and does not depend on latches
outside L, and S({b}) is independent of other variables.
Furthermore, for the rest of latches M ′\L, the reset functions
are the the same as in W ′ therefore stratified. We conclude
that W is stratified. By Def. 14, L ⊆ M and the inputs I stay
the same in W . Based on Def. 14, for the common latches L,
their reset function and transition function are the same as in
C, and q0 ≡ P. Therefore W simulates C.

We proceed to prove that the BMC check passes in W , i.e.,
S(M) ⇒ Q(I,M). Since b is false at reset, q1 is trivially
satisfied. The reset also directly implies R(L) and S′(M ′\L),
which gives us q2 and q3. We have q0 since the property holds

at reset in C. We then move on to prove the consecution check
passes (V1∧Q(I0,M0) ⇒ Q(I1,M1)). We consider two cases
based on the value of b0 and begin with the case b ≡ ⊤.
By Def. 14, since b always transitions to true, q2(I1, L1)
and q3(I1, L1) are trivial. Additionally, q1(I1,M1) implies
Q′(I1,M

′
1) which by Def. 12 implies P (I1, L1), as C and

C ′ share the same property. Thus we only need to show
Q′(I1,M

′
1) holds after one transition to satisfy q1(I1,M1).

Consider a fixed satisfying assignment for V1∧Q(I0,M0) and
b is true. We show that the same assignment satisfies V ′

1 (the
unrolling of W ′). For latches in M ′\L′ this follows directly
from the definition. By Def. 12 and Def. 10 L has the same
transition function in all 4 circuits (Fig. 6). The latches in L′\L
stay constant which matches Def. 10. The rest follows from
Def. 12. With this, q1(I0,M ′

0) gives us Q′(I0,M
′
0) which is

an inductive invariant in W ′. Q′(I1,M
′
1) follows.

Now consider a satisfying assignment where b is false
thereby R(L0) and S′(M ′

0\L0). By Def. 10, for the latches
in L the transition function matches the reset function in C ′,
thus we get R′(L1). The latches in L′\L copy the values of
I ∪ A. By Def. 10 R′(I ′1) holds trivially and R′(A′

1) follows
from R(L0). We get R′(L′

1\L1). Together with the previous
result we have R′(L′

1), which by Def. 3 yields S′(L′
1). The

reset for the rest of the latches M ′\L′ follows directly from
Def. 14 and we get S′(M ′

1). Since the inductive invariant of
W ′ holds in its reset we conclude with Q′(I1,M

′
1).

The above concludes the description and formal proof of our
certification framework. To perform temporal decomposition
on a given circuit under verification, we use cube simulation
to find a set of transient signals and determine the duration
d. The original circuit is then time-shifted by constructing
forward circuits iteratively d times. After eliminating transient
signals we obtain a simplified circuit that is then given to a
base model checker for verifying the simplified safety property
while producing a witness circuit. We construct a final witness
circuit by building backward witness circuit d times again in
an iterative manner. This final witness circuit serves as a single
certificate for both preprocessing and backend model checking.
It can be easily verified by an external certifier.

VI. IMPLEMENTATION AND EXPERIMENTAL EVALUATION

We implemented the method proposed in Section IV and V
in the certifying model checker CHMC [28]. Our model
checker CHMC supports two configurations for the backend
solver performing certification on simplified models (i.e.,
factor circuits) after preprocessing: k-induction and BDD.
As factor circuits use reset functions, we extended the k-
induction-based open-source model checker MCAIGER [29] to
support reset functions and also extended the tool presented by
the authors of [8] to generate witness circuits. For the BDD-
based configuration, we used the simple BDD-based model
checker AIGTRAV developed by one of the authors of this
paper at JKU Linz which already supports reset functions.
We reencoded the convergent BDD to an AIG encoding the
membership in the set of reachable states, which is sim-
ply the inductive invariant. The witness circuit is the factor

50

Authorized licensed use limited to: Universitaet Linz. Downloaded on October 04,2025 at 14:02:25 UTC from IEEE Xplore.  Restrictions apply. 



circuit having the inductive invariant as the new property.
Our model checker CHMC then performs witness composition
and backwarding to generate the final witness verified by
CERTIFAIGER++ [30].

0 1000 2000 3000 4000 5000 6000 7000
time [s]

0

100

200

300

400

500

600

In
st

an
ce

s s
ol

ve
d

(623) TDVBS

(609) VBS
(557) TDkind

(529) kind
(333) TDBDD

(294) BDD

Fig. 7: Comparison for temporal decomposition with k-
induction (TDkind) and BDDs (TDBDD) and the base engines
on HWMCC10 instances. We show the results of the best per-
forming solver for each instance with temporal decomposition
(TDVBS) as well as the best performing solver without it (VBS).

In principle our approach naturally works for any model
checker that produces a certificate (e.g., IC3/PDR, interpo-
lation), however, currently the available implementations for
these do not support reset functions nor do they follow the
pre-defined certificate format. It seems non-trivial to do so for
certain model checkers. Note that a simple constraint-based
construction to eliminate reset functions does not solve the
problem, as the produced certificate needs to be lifted for the
overall certification. It is however natural to modify symbolic
model checkers to support reset functions, which we strongly
encourage for extending the certification capability to a larger
set of model checking tools.

State-of-the-art model checkers such as ABC [3] use ad-
ditional preprocessing techniques and are multi-engines for
efficient verification, which are hard to separate from each
other thus making it difficult to certify a complete model
checker with a multitude of preprocessing algorithms. How-
ever, we have shown how the certification of an important
preprocessing technique, namely temporal decomposition, can
be certified in a compositional manner. We believe that similar
compositional certification techniques can be identified for
other preprocessing techniques. In particular the approach
used here can be used for any other preprocessing technique
subsumed by cube simulation.

To increase trust in our tool we generated 42 million random
circuits [24] and checked all produced certificates. We used the
HWMCC’10 benchmarks [31] and additionally scaled the shift
counter example for further evaluation. All experiments were
conducted in parallel on 32 nodes of a cluster. Each node has

10 2 10 1 100 101 102 103 104

Model Checking [s]

10 2

10 1

100

101

102

103

104

Ce
rti

fic
at

io
n 

[s
]

TDkind: 11.54
TDBDD: 0.77

Fig. 8: Certification vs. model checking time.

access to two 8-core Intel Xeon E5-2620 v4 CPUs running at
2.10 GHz (turbo-mode disabled) and 128 GB main memory.
We allocate 8 instances to every node with a timeout of 2
hours and memory limit of 16 GB per instance.

We studied the impact of the preprocessing technique on
k-induction and BDD-based model checking. The preprocess-
ing (ternary simulation and circuit transformation) terminated
within 200ms on all instances. Fig. 7 displays the number
of instances solved over time by the four configurations. We
observe that CHMC with k-induction (TDkind) outperforms the
rest. It verified a total of 557 instances, among which 235
are UNSAT. In particular, compared with base MCAIGER
(kind), we gain 29 UNSAT instances. We further inspected the
inductive depths of the original circuits and their simplified
ones; the results match the claim of Theorem 1. In our
benchmark set k was reduced for 19 instances. As for the BDD
configuration (TDBDD), CHMC performed well on SAT cases,
solving an additional of 39 instances. These results clearly
demonstrate that simplifying transient logic in circuits can be
beneficial for model checking.

We now proceed to evaluate the certification framework on
both k-induction and BDD configurations. Table I summarises
the results obtained on certifying the HWMCC10 benchmarks,
where we display a subset of interesting instances (sorted by
witness size). CHMC was able to produce certificates for all
235 unsatisfiable instances that it was able to model-check.
For the k-induction variant, all certificates were successfully
verified, with a mean ratio of certification time and model
checking time of 11.54, which can be further inspected in
Fig. 8. This shows the practicality of our method.

On average, duration d tends to be small, which can be
partially explained as the starting sequence in designs playing
a role. On the BDD variant, the average ratio of certification
and model checking time is 0.77. However, 5 instances expe-
rienced time-outs when verifying the certificates produced by

51

Authorized licensed use limited to: Universitaet Linz. Downloaded on October 04,2025 at 14:02:25 UTC from IEEE Xplore.  Restrictions apply. 



TABLE I: Columns report cycle length (ω), stem length of cube lasso (δ), duration (d), no. transients found (τ ), inductive
depth of factor circuits (k), original model size (#K

M ), model checking time (tM (s)), certification time (tC(s)), and certificate
size (#K

M ). All circuit sizes (#K
M ) are measured in no. thousands of gates including latches and inputs. The certification time

is the total of generation time and SAT solving time. We report three mean values on different subsets of benchmarks. Mean
TDBDD and TDkind are computed over 223 and 235 instances respectively, where certification checks terminated. Mean TD∩
concerns the intersection of both sets, from which we display 20 instances that produced the biggest certificate sizes for TDkind.
Additionally, we list 5 instances at the bottom for which the BDD-based algorithm succeeded in model checking the simplified
circuit, but produced certificates that could not be checked within the time limit.

Decomposition Model TDkind TDBDD

ω δ d τ k #K
M tM tC #K

M tM tC #K
M

Mean TDBDD(223) 1.9 5.8 0.3 4.9 1.7 4 – – – 100.29 77.71 58
Mean TDkind(235) 2.1 8 0.9 46.3 4.1 7 10.40 120.06 93 – – –

Mean TD∩(157) 2.2 5.7 0.4 5.1 1.7 4 0.19 46.40 35 65.33 46.69 36

pj2002 1 4 2 2 9 37 4.13 3522.82 1757 33.09 25.56 129
pj2003 1 4 2 2 9 37 4.00 3203.89 1757 33.57 27.57 129
cmuperiodic 1 1 1 1 96 2 16.41 173.04 480 0.05 0.52 5
mentorbm1p09 1 39 1 122 2 36 0.45 92.00 331 0.18 22.17 123
mentorbm1or 1 39 1 122 1 36 0.32 21.24 123 0.10 21.56 123
nusmvreactorp4 1 1 1 1 13 1 0.20 12.59 85 7177.65 1.28 15
neclaftp5001 1 10 10 21 0 2 0.05 1.34 79 0.03 1.37 79
neclaftp5002 1 10 10 21 0 2 0.05 1.34 79 0.03 1.40 79
bobsynthand 1 38 1 1 0 19 0.12 7.85 73 0.02 7.79 73
139464p0 1 4 1 2 0 21 0.09 12.05 45 0.06 12.16 45
bj08amba4g5 1 6 0 0 3 14 0.13 69.07 42 219.68 11.06 14
139463p0 1 4 1 2 0 15 0.07 9.72 33 0.04 9.60 33
bj08amba3g62 1 4 0 0 3 10 0.10 22.99 31 1.85 4.92 10
139454p0 1 4 1 2 0 13 0.06 4.73 30 0.06 4.78 30
139462p0 1 4 1 2 0 10 0.06 4.82 23 0.03 4.81 23
139453p0 1 4 1 2 0 9 0.05 3.51 21 0.03 3.58 21
bj08amba5g82 1 5 0 3 0 20 0.07 16.49 20 1.98 16.85 20
139444p0 1 4 1 2 0 8 0.05 3.60 19 0.03 3.62 19
pdtvisvsa16a04 5 7 0 0 2 7 0.05 2.57 18 1.95 147.20 258
pdtvisvsa16a00 5 7 0 0 2 7 0.05 2.62 18 0.02 1.12 7

pdtswvtma6x4p3 1 7 0 0 44 2 77.00 138.26 138 71.75 to 13534
pdtswvtma6x4p2 1 7 0 0 37 2 37.69 76.23 116 86.86 to 13327
nusmvreactorp3 1 1 1 1 4 1 0.04 2.30 24 1100.38 to 6588
pdtvisvsar04 5 7 0 0 2 2 0.02 0.61 8 22.97 to 11074
pdtvisminmax2 1 3 0 0 2 1 0.02 0.14 2 49.29 to 2776

TABLE II: Comparison of kind and TDkind for the Shift Counter. The n column reports no. of bits. Circuits sizes (#M ) measured
in number of gates. Compared with TDkind, as n increases the model checking quickly becomes hard for the k-induction only
engine and it experiences time-outs (to), while TDkind was still able to solve the instances within reasonable time.

Decomposition Model kind TDkind

n ω δ d τ k #M tM tC #M tM tC #M

2 1 1 1 2 2 4 0.003 0.051 66 0.011 0.053 23
3 1 2 2 3 4 13 0.003 0.053 250 0.010 0.057 79
4 1 3 3 4 8 22 0.004 0.066 739 0.010 0.057 159
5 1 4 4 5 16 31 0.005 0.093 1974 0.010 0.061 263
6 1 5 5 6 32 40 0.008 0.165 5045 0.013 0.069 391
7 1 6 6 7 64 49 0.031 0.361 12764 0.014 0.069 543
8 1 7 7 8 128 58 0.111 0.987 32883 0.010 0.080 719
9 1 8 8 9 256 67 0.461 3.460 88618 0.011 0.086 919

10 1 9 9 10 512 76 2.409 14.830 255649 0.011 0.084 1143
11 1 10 10 11 1024 85 13.711 59.410 799128 0.012 0.105 1391
12 1 11 11 12 2048 94 86.877 164.968 2698130 0.013 0.108 1663
13 1 12 12 13 4096 103 498.395 501.894 9693060 0.014 0.125 1959
14 1 13 13 14 8192 112 2686.540 2217.410 36368300 0.011 0.108 2279

1000 1 999 999 1000 2999 8986 to to to 5.902 1809 11996000

52

Authorized licensed use limited to: Universitaet Linz. Downloaded on October 04,2025 at 14:02:25 UTC from IEEE Xplore.  Restrictions apply. 



TABLE III: Optimised ternary simulation of three configurations: base version, counter stagnation, cube subsumption with
counter stagnation. The number of latches is denoted by #L (#M is the total number of gates including inputs and latches),
and t is time taken (seconds) by ternary simulation. Highlighted numbers indicate the best performing variant for each instance.

ternary simulation counter stagnation cube subsumption

#M #L ω δ τ t ω δ τ t ω δ τ t

bob12m04 269935 43950 2 9 199 0.06 2 9 199 0.07 2 6 153 0.05
6s376r 113207 4708 131072 262160 145 766.34 1 8198 116 16.30 1 2056 116 4.20
bob12m15 2855 448 12288 10379 133 1.62 12288 10379 133 1.60 3 4108 12 0.40
bobsmnut1 6301 644 1024 259 107 0.21 1024 259 107 0.19 1024 81 106 0.18
shift1add 174 27 1 262145 20 1.20 1 262145 20 1.25 1 2056 1 0.01
6s47 4950 815 to to to to 2 262167 8 35.63 2 2085 6 0.30
6s100 763775 97598 to to to to 1 2053 36 37.53 1 2053 36 41.48
6s107 25447 1568 to to to to 1 32799 746 16.93 1 2079 746 1.18
6s149 112623 12781 to to to to 1 20497 4 47.81 1 5137 4 12.88
6s342rb122 394016 56838 to to to to to to to to 192 46080 1894 354.60
6s202b41 604375 68881 to to to to 1 4136 8574 45.71 1 2088 8574 28.35
6s204b16 237048 28986 to to to to 1 4136 4034 19.33 1 2088 4034 13.51
6s205b20 603985 68842 to to to to 1 4136 8727 46.56 1 2088 8727 28.08
6s355rb8740 179445 15091 to to to to 1 8466 221 37.07 1 3346 221 15.51
6s400rb7819 180067 14665 to to to to 1 8466 221 36.96 1 2322 221 11.00
cucnt128 1272 128 to to to to to to to to 1 61440 0 1.82
cucnt32 312 32 to to to to to to to to 1 1054 0 0.01

the BDD backend. Indeed, the BDD algorithm can produce
large certificates due to the nature of using the exact set of
reachable states as the inductive invariant.

We further investigate the shift counter example by scaling
the number of bits (n). The results obtained are reported in
Table II. As expected, we found that temporal decomposition
significantly simplifies model checking, whereas MCAIGER
quickly experiences timeouts. Note that in this particular
example, the value of k simply decreases to 0 on the simplified
model which becomes trivial after temporal decomposition.

Optimised Ternary Simulation To find transient signals
we initially implemented a base version of ternary simulation.
We now present two optimisations, also subsumed by cube
simulation: (i) Counter stagnation: if the current cube size
does not decrease in a few thousand steps, we observe a
stagnation in the search. We thus remove a random latch that
has flipped sign between the last two cubes. In case we remove
a latch that is part of a large binary counter in the design,
all more significant bits will be removed in a linear number
of simulation steps. This technique can therefore achieve an
exponential reduction in simulation steps. (ii) Cube subsump-
tion: the cube lasso can terminate in a cube which implies a
previous cube under the transition relation (Def. 5). Ternary
simulation on the other hand utilises a hash map to terminate
when an exact match of a cube is visited a second time. With
cube subsumption it terminates when the current cube is a
(not necessarily proper) superset of a previously encountered
cube. For this we implement a forward-subsumption algorithm
utilising a one-watch-literal data structure [32].

We compare it to two configurations with different levels
of optimisation on 20,815 instances including all HWMCC
benchmarks (2007-2020) [33]. The optimised versions can
miss transients however it does not happen often. Table III
displays the instances where the number of transients differ
among three configurations. Worth mentioning is that cube

subsumption together with counter stagnation did not time out
on any instances of the entire benchmark set.

VII. CONCLUSION

While certification for model checking has been studied for
decades, the number of certifiable approaches are still limited.
In this paper we revisited the popular preprocessing technique
temporal decomposition by formally defining it and proving
its correctness. We further present a certification framework in
a compositional manner, that builds a single witness circuit.
The approach was evaluated on a wide range of benchmarks.
Note that our framework requires model checkers to allow
reset functions, that is a feature we would like to encourage
existing model checkers to implement. Experimental results
show that our approach is quite effective in practice.

In the future we plan to investigate other preprocessing
techniques such as retiming [34], phase abstraction [35], as
well as stabilizing constraints [15], [36]. Furthermore, our
simple generic model checking certificate makes it appealing
to work on verified proof checkers too.

53

Authorized licensed use limited to: Universitaet Linz. Downloaded on October 04,2025 at 14:02:25 UTC from IEEE Xplore.  Restrictions apply. 



REFERENCES

[1] E. M. Clarke, D. E. Long, and K. L. McMillan, “Compositional model
checking,” in LICS. IEEE Computer Society, 1989, pp. 353–362.

[2] M. L. Case, H. Mony, J. Baumgartner, and R. Kanzelman, “Enhanced
verification by temporal decomposition,” in FMCAD. IEEE, 2009, pp.
17–24.

[3] R. K. Brayton and A. Mishchenko, “ABC: An academic industrial-
strength verification tool,” in CAV, ser. Lecture Notes in Computer
Science, vol. 6174. Springer, 2010, pp. 24–40.

[4] R. Cavada, A. Cimatti, M. Dorigatti, A. Griggio, A. Mariotti, A. Micheli,
S. Mover, M. Roveri, and S. Tonetta, “The nuXmv symbolic model
checker,” in CAV, ser. Lecture Notes in Computer Science, vol. 8559.
Springer, 2014, pp. 334–342.

[5] M. Sheeran, S. Singh, and G. Stålmarck, “Checking safety properties
using induction and a SAT-solver,” in FMCAD, ser. Lecture Notes in
Computer Science, vol. 1954. Springer, 2000, pp. 108–125.

[6] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang,
“Symbolic model checking: 10ˆ20 states and beyond,” in LICS. IEEE
Computer Society, 1990, pp. 428–439.

[7] A. R. Bradley, “SAT-based model checking without unrolling,” in
VMCAI, ser. Lecture Notes in Computer Science, vol. 6538. Springer,
2011, pp. 70–87.

[8] E. Yu, N. Froleyks, A. Biere, and K. Heljanko, “Stratified certification
for k-induction,” in FMCAD. IEEE, 2022, pp. 59–64.

[9] E. Yu, A. Biere, and K. Heljanko, “Progress in certifying hardware
model checking results,” in CAV (2), ser. Lecture Notes in Computer
Science, vol. 12760. Springer, 2021, pp. 363–386.

[10] M. J. H. Heule, “Proofs of unsatisfiability,” in Handbook of
Satisfiability - Second Edition, ser. Frontiers in Artificial Intelligence
and Applications, A. Biere, M. Heule, H. van Maaren, and T. Walsh,
Eds. IOS Press, 2021, vol. 336, pp. 635–668. [Online]. Available:
https://doi.org/10.3233/FAIA200998

[11] M. J. Heule and A. Biere, “Proofs for satisfiability problems,” in All
about Proofs, Proofs for all, B. W. Paleo and D. Delahaye, Eds. College
Publications, 2015, ch. 1.

[12] M. Järvisalo, M. Heule, and A. Biere, “Inprocessing rules,” in
Automated Reasoning - 6th International Joint Conference, IJCAR
2012, Manchester, UK, June 26-29, 2012. Proceedings, ser. Lecture
Notes in Computer Science, B. Gramlich, D. Miller, and U. Sattler,
Eds., vol. 7364. Springer, 2012, pp. 355–370. [Online]. Available:
https://doi.org/10.1007/978-3-642-31365-3 28

[13] S. Eriksson, G. Röger, and M. Helmert, “Unsolvability certificates for
classical planning,” in Proceedings of the Twenty-Seventh International
Conference on Automated Planning and Scheduling, ICAPS 2017, Pitts-
burgh, Pennsylvania, USA, June 18-23, 2017, L. Barbulescu, J. Frank,
Mausam, and S. F. Smith, Eds. AAAI Press, 2017, pp. 88–97.

[14] K. S. Namjoshi, “Certifying model checkers,” in CAV, ser. Lecture Notes
in Computer Science, vol. 2102. Springer, 2001, pp. 2–13.

[15] A. Griggio, M. Roveri, and S. Tonetta, “Certifying proofs for SAT-based
model checking,” Formal Methods Syst. Des., vol. 57, no. 2, pp. 178–
210, 2021.

[16] ——, “Certifying proofs for LTL model checking,” in FMCAD. IEEE,
2018, pp. 1–9.

[17] A. Abuin, A. Bolotov, U. Dı́az-de-Cerio, M. Hermo, and P. Lucio,
“Towards certified model checking for PLTL using one-pass tableaux,”
in TIME, ser. LIPIcs, vol. 147. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2019, pp. 12:1–12:18.

[18] T. Kuismin and K. Heljanko, “Increasing confidence in liveness model
checking results with proofs,” in Haifa Verification Conference, ser.
Lecture Notes in Computer Science, vol. 8244. Springer, 2013, pp.
32–43.

[19] J. Esparza, P. Lammich, R. Neumann, T. Nipkow, A. Schimpf, and
J. Smaus, “A fully verified executable LTL model checker,” in CAV,
ser. Lecture Notes in Computer Science, vol. 8044. Springer, 2013, pp.
463–478.

[20] ——, “A fully verified executable LTL model checker,” Arch. Formal
Proofs, vol. 2014, 2014.

[21] S. Wimmer and J. von Mutius, “Verified certification of reachability
checking for timed automata,” in TACAS (1), ser. Lecture Notes in
Computer Science, vol. 12078. Springer, 2020, pp. 425–443.

[22] D. Beyer, M. Dangl, D. Dietsch, and M. Heizmann, “Correctness wit-
nesses: exchanging verification results between verifiers,” in SIGSOFT
FSE. ACM, 2016, pp. 326–337.

[23] D. Beyer, M. Dangl, D. Dietsch, M. Heizmann, T. Lemberger, and
M. Tautschnig, “Verification witnesses,” ACM Trans. Softw. Eng.
Methodol., vol. 31, no. 4, pp. 57:1–57:69, 2022.

[24] A. Biere, K. Heljanko, and S. Wieringa, “AIGER 1.9 and beyond,” In-
stitute for Formal Models and Verification, Johannes Kepler University,
Altenbergerstr. 69, 4040 Linz, Austria, Tech. Rep. 11/2, 2011.

[25] A. Degtyarev and A. Voronkov, “Equality reasoning in sequent-based
calculi,” in Handbook of Automated Reasoning (in 2 volumes), J. A.
Robinson and A. Voronkov, Eds. Elsevier and MIT Press, 2001, pp.
611–706.

[26] C. H. Seger and R. E. Bryant, “Formal verification by symbolic
evaluation of partially-ordered trajectories,” Formal Methods Syst. Des.,
vol. 6, no. 2, pp. 147–189, 1995.

[27] E. M. Clarke, O. Grumberg, D. Kroening, D. A. Peled, and H. Veith,
Model checking, 2nd Edition. MIT Press, 2018. [Online]. Available:
https://mitpress.mit.edu/books/model-checking-second-edition

[28] CHMC, “CHMC,” 2023, http://fmv.jku.at/chmc.
[29] A. Biere and R. Brummayer, “Consistency checking of all different

constraints over bit-vectors within a SAT solver,” in FMCAD. IEEE,
2008, pp. 1–4.

[30] Certifaiger, “Certifaiger,” 2021, http://fmv.jku.at/certifaiger.
[31] A. Biere and K. Claessen, “Hardware model checking competition

2010,” 2010,
http://fmv.jku.at/hwmcc10/.

[32] L. Zhang, “On subsumption removal and on-the-fly CNF simplification,”
in Theory and Applications of Satisfiability Testing, 8th International
Conference, SAT 2005, St. Andrews, UK, June 19-23, 2005, Proceedings,
ser. Lecture Notes in Computer Science, F. Bacchus and T. Walsh,
Eds., vol. 3569. Springer, 2005, pp. 482–489. [Online]. Available:
https://doi.org/10.1007/11499107 42

[33] M. Preiner, A. Biere, and N. Froleyks, “Hardware model checking
competition 2020,” 2020.

[34] A. Kuehlmann and J. Baumgartner, “Transformation-based verification
using generalized retiming,” in CAV, ser. Lecture Notes in Computer
Science, G. Berry, H. Comon, and A. Finkel, Eds., vol. 2102. Springer,
2001, pp. 104–117.

[35] P. Bjesse and J. H. Kukula, “Automatic generalized phase abstraction
for formal verification,” in ICCAD. IEEE Computer Society, 2005, pp.
1076–1082.

[36] K. Claessen and N. Sörensson, “A liveness checking algorithm that
counts,” in FMCAD. IEEE, 2012, pp. 52–59.

54

Authorized licensed use limited to: Universitaet Linz. Downloaded on October 04,2025 at 14:02:25 UTC from IEEE Xplore.  Restrictions apply. 


