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Abstract

Once just considered the archetypal intractable problem, Boolean satisfiability (SAT)
has flourished into one of the most effective tools for automated reasoning. One of its
most successful applications is model checking, where SAT solvers are used to verify
the correctness of systems by checking whether certain properties hold. This thesis
investigates how to deepen the integration between SAT solving and model checking to
improve performance and increase trust in the results.

We begin by presenting the state-of-the-art incremental SAT solver CaDiCaL 2.0. We
extend its assumption-based interface with clause assumptions, and demonstrate how
this enhancement accelerates IC3-based model checking. Building on CaDiCaL., we
introduce a new backbone extraction tool, CadiBack. A formula’s backbone—the set of
literals true in every satisfying assignment—can benefit various SAT-based applications,
including verification, state space approximation, and fault localization. As part of this
work, we present a polynomial-time backbone extraction algorithm and evaluate it as
a preprocessor for CadiBack. Additionally, we formalize ternary simulation through
the lens of abstract interpretation and propose a technique to improve accuracy using
backbone extraction.

We then address how to achieve a similar level of trust in model checking as is
commonly vested in SAT solvers. To this end, we develop a certification approach
for hardware model checking. Specifically, we present certificate constructions for the
preprocessing techniques of phase abstraction and constraint extraction. Our efforts
culminate in the Hardware Model Checking Competition 2024, which marks the intro-
duction of mandatory certificates for all participating tools. The results convincingly
show the practical efficiency and effectiveness of our approach.

Finally, this thesis further explores competitions as a scientific method for advancing
solver technology. Drawing on the author’s experience co-organizing several SAT and
hardware model checking competitions, we examine what insights into solver innovation
can be gained from these events.
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Zusammenfassung

Das Erfiillbarkeitsproblem der Aussagenlogik (SAT) galt zunéchst als Paradebeispiel
fiir nicht effizient 16sbare Probleme. Seitdem hat es sich zu einem der wichtigsten
Werkzeuge der automatisierten Beweisfiihrung entwickelt. Es bildet die Grundlage fiir
eine Vielzahl von Anwendungen — insbesondere im Model Checking, wo SAT-Solver
eingesetzt werden, um die Korrektheit von Modelleigenschaften zu beweisen.

Diese Dissertation untersucht, wie SAT-Solving und Model Checking weiter integriert
werden konnen, um effizientere automatisierte Verifikationsverfahren zu ermoglichen
und einen hoheren Grad an Vertrauen in ihre Korrektheit zu erlangen.

Zu Beginn stellen wir den modernen inkrementellen SAT-Solver CaDiCaL 2.0 vor.
Wir erweitern dessen annahmenbasierte Schnittstelle fiir inkrementelle Anwendun-
gen um Klausel-Annahmen und zeigen, dass diese Erweiterung IC3-basiertes Model
Checking signifikant beschleunigt. Aufbauend auf CaDiCal. entwickeln wir die An-
wendung CadiBack zur Backbone-Extraktion. Der Backbone einer Formel — die Menge
aller Literale, die in jeder erfiillenden Belegung wahr sind — kann verschiedene SAT-
basierte Anwendungen unterstiitzen, etwa Verifikation, Zustandsraumapproximation
und Fehlereingrenzung. Im Rahmen dieser Arbeit stellen wir einen polynomiellen
Algorithmus zur Backbone-Extraktion vor und evaluieren ihn als Vorverarbeitungs-
schritt fiir CadiBack. Dariiber hinaus formalisieren wir terndre Simulation im Rahmen
abstrakter Interpretation und prisentieren eine Technik zur Genauigkeitssteigerung, die
auf Backbone-Informationen basiert.

AnschlieBend widmen wir uns der Frage, wie sich in der Modellpriifung ein dhnliches
MaB an Vertrauen erreichen lédsst wie bei SAT-Solvern. Zu diesem Zweck entwickeln
wir einen Zertifizierungsansatz fiir die Verifikation von Hardware-Systemen. Konkret
présentieren wir Zertifikatskonstruktionen fiir die Vorverarbeitungstechniken der Phasen-
abstraktion und Constraint-Extraktion. Unsere Arbeit kulminiert in der Hardware Model
Checking Competition 2024, in der erstmals fiir alle teilnehmenden Modellpriifer Zer-
tifikate verpflichtend eingefiihrt wurden. Die Ergebnisse belegen eindrucksvoll die
praktische Effizienz und Wirksamkeit unseres Ansatzes.

Abschlielend untersuchen wir, welchen Beitrag Wettbewerbe als wissenschaftliche
Methode zur Weiterentwicklung von Solver-Technologien leisten kénnen.
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Chapter 1

Introduction

Modern software and hardware systems are marvels of complexity, often comprising
millions of lines of code or intricate circuit designs. Yet this complexity comes at a cost:
undetected errors can lead to catastrophic failures. A striking example is the Pentium
FDIV bug, uncovered by Thomas R. Nicely in 1994, which caused Intel Pentium
processors to produce incorrect floating-point calculations—a flaw that undermined trust
in otherwise groundbreaking technology. Such incidents underscore a critical imperative:
ensuring system correctness prior to deployment is not merely a technical challenge, but
a societal necessity.

Formal methods offer a rigorous solution, providing automated reasoning techniques
to verify that software and hardware systems meet their specified requirements. Among
these, model checking [33] stands out as a powerful technique, systematically exploring
whether a system model satisfies a logical specification. At the heart of many model
checkers lies the propositional satisfiability (SAT) solver—a computational engine
that determines whether a Boolean formula can be satisfied. Modern SAT solvers,
powered by Conflict-Driven Clause Learning (CDCL), are indispensable in state-of-
the-art hardware verification, where model checkers repeatedly invoke them to answer
complex queries. This thesis explores the profound interplay between SAT solving and
model checking, aiming to push the boundaries of both fields.

One key enabler in this integration is incremental SAT solving. Techniques like
bounded model checking [20], IC3 [34], and k-induction [35] rely on solving sequences
of closely related SAT instances. By leveraging incremental solver interfaces, these
methods minimize redundant computation and enhance efficiency. Yet the demands of
model checking expose limitations in traditional SAT approaches, spurring the develop-
ment of new techniques that may transcend their original scope. Circuit-specific SAT,
for example, exploits structural insights from hardware designs to boost performance [1,
2]. This leads to our first research question:

RQ1: How can we optimize SAT solving for aberrant applications?

We address this by exploring incremental strategies and circuit-aware techniques,
seeking not only performance gains but also simplified solver interaction.

Beyond efficiency, SAT solvers offer a unique strength: the ability to produce proofs.
For satisfiable instances, they provide witnesses in the form of satisfying assignments;
for unsatisfiable instances, resolution proofs. In SAT competitions, solvers are required



to produce such certificates, which fosters trust and robustness. This capability motivates
our second question:

RQ2: How can model checking reach the same level of trust as SAT solving?

By developing certificates for model checking, we aim for end-to-end trustworthiness—
ensuring that every verification step is proven correct.

Competitions have long fueled progress in automated reasoning. Events such as the
SAT Competition and the Hardware Model Checking Competition provide benchmarks,
compare solvers on even ground, and ignite innovation. As an organizer of several such
events, the author of this thesis has witnessed how important competitions are to any
field of research. This motivates our third question:

RQ3: What is the role of competitions in scientific inquiry?

Through contributions to and analysis of these events, this thesis highlights their
influence and importance as proving grounds for ideas and as an aspect of the scientific
method.

This thesis addresses these questions through a multifaceted approach, with a particu-
lar emphasis on hardware verification. We begin by presenting CaDiCaL, a state-of-the-
art SAT solver designed with a rich library interface for incremental solving. Despite
its extensive feature set, experimental results show that CaDiCaL achieves competitive
performance in both stand-alone and incremental settings. More importantly, as of
writing, it is the only solver that fully supports LRAT proof generation, enabling unpar-
alleled efficiency in proof checking. We leverage this and CaDiCal.’s circuit-specific
optimizations when validating model checking certificates with a reduced base of trust.
We further extend the traditional assumption-based interface with clause assumptions
and use this new extension to accelerate the IC3 model checking algorithm.

Building on this line of research, we developed CadiBack, a backbone extraction
tool that leverages CaDiCaL’s unique features. We extend existing algorithms with
polynomial-time backbone extraction from the binary implication graph. We use
the backbone extraction technique we developed to increase the precision of cube
simulation—a generalization of ternary simulation—which we propose and formalize
as an instance of abstract interpretation. Cube simulation serves as a core compo-
nent in several preprocessing techniques for hardware model checking, most notably
Temporal Decomposition and Phase Abstraction. We further formalize—and, in some
cases, generalize—these techniques with the end goal of developing complete certifi-
cate constructions. In other words, we show how a model checker that employs such
preprocessing techniques can generate certificates to prove the correctness of the entire
model checking process, including preprocessing. We present a strong argument for the
practical viability of our approach by introducing certificates to the Hardware Model
Checking Competition and presenting a detailed evaluation focused on the produced
certificates.



1.1 Outline and Contributions

This thesis is structured as a cumulative dissertation and is divided into three main
parts. The first part, presented in this chapter, provides a high-level overview of the
contributions, followed by essential background material in the next chapter. The second
part consists of Chapters 4—11, which include eight peer-reviewed papers. Finally, the
thesis concludes with a discussion of future research directions.

It is important to acknowledge that the work presented in this thesis would not have
been possible without the support and collaboration of my co-authors. Below, I outline
my specific contributions to each paper.

Chapter 4 CaDiCal 2.0 [4] with Armin Biere, Tobias Faller, Katalin Fazekas, Mathias
Fleury and Florian Pollitt. In Proceedings of Computer Aided Verification—36th
International Conference, CAV 2024, Montreal, QC, Canada, July 24-27, 2024.

The author implemented the constraint feature (further described in Chapter 5) in
CaDiCaL. He attends the regular development meetings and provides discussion on
applications, as well as evaluation and presentation of experimental results. In this paper,
he worked on the new constraint and flipping features, and the overall presentation of the
presented components. He was responsible for conducting all the evaluation presented
in the paper with the exception of the interpolation run.

Chapter 5. Single Clause Assumption without Activation Literals to Speed-up IC3 [5]
with Armin Biere. In Proceedings of Formal Methods in Computer Aided Design,
FMCAD 2021, New Haven, CT, USA, October 19-22, 2021.

N. Froleyks is the first author of the paper. The initial motivation was provided by A.
Biere, and the algorithm emerged from discussions between the author and A. Biere.
N. Froleyks handled both the implementation and the evaluation.

Chapter 6. CadiBack: Extracting Backbones with CaDiCalL [6] with Wenxi Wang
and Armin Biere. In Proceedings of the 26th International Conference on Theory and
Applications of Satisfiability Testing, SAT 2023, July 4-8, 2023, Alghero, Italy.

A. Biere implemented the tool described in the paper. The experimental evaluation
was carried out jointly by A. Biere and N. Froleyks. The author reviewed the code and
described the algorithms in the paper.

Chapter 7. BIG Backbones [7] with Emily Yu and Armin Biere. In Proceedings of
Formal Methods in Computer-Aided Design, FMCAD 2023, Ames, A, USA, October
24-27,2023.

N. Froleyks is the first author. He implemented the extensions to CADIBACK,
developed the theoretical results, and performed the evaluation. The KB3 algorithm is
an adaptation of an idea originally implemented by A. Biere in a different context.

Chapter 8. Ternary Simulation as Abstract Interpretation [8] with Emily Yu and Armin
Biere. In Proceedings of MBMYV 2024; 27. Workshop.

N. Froleyks is the first author of this workshop paper. He developed the formalization
and implemented the narrowing and widening operators as well as the new termination
strategy. The author also conducted the experimental evaluation.



Chapter 9. Certifying Phase Abstraction [9] with Emily Yu, Armin Biere, Keijo Hel-
janko. In Proceedings of Automated Reasoning—12th International Joint Conference,
IJCAR 2024, Nancy, France, July 3-6, 2024.

N. Froleyks is the first author. The original certificate generation for phase abstrac-
tion was developed by E. Yu. The author extended the phase abstraction technique and
the certification to cover it. He further implemented both the preprocessing technique
and its certificate construction into his model checker. He was responsible for the
evaluation presented in the paper.

Chapter 10. Certifying Constraints in Hardware Model Checking [10] with Emily Yu,
Armin Biere, and Keijo Heljanko. Submitted.

The author worked on the certificate constructions detailed in the paper and con-
tributed the completeness proofs. He devised the weak induction check. All presented
tools and experiments were developed by the author.

Chapter 11. Introducing Certificates to the Hardware Model Checking Competition [11]
with Emily Yu, Mathias Preiner, Armin Biere, and Keijo Heljanko. In Proceedings
of Computer Aided Verification—37th International Conference, CAV 2025, Zagreb,
Croatia, July 21-25, 2025.

N. Froleyks is the first author of the paper. In collaboration with E. Yu, the author
extended the theory of hardware model checking certificates for the version used in the
competition. He implemented this theory in the checker deployed for the competition,
performed the evaluation, and contributed the correctness proofs in the paper.

In addition to the papers included in this thesis, I contributed to several other works [1—
3, 12-16], that are not part of this dissertation. Furthermore, I co-authored papers [17—
19] partially based on earlier master’s thesis work, which have also been excluded.

Beyond the Hardware Model Checking Competition 2024 [11] discussed in this thesis,
I actively contributed to the competitions in our community by organizing [20-23],
submitting benchmarks [24-27], and joining [28, 29].



Chapter 2

Background

This chapter provides a high-level overview of the foundational concepts relevant to this
thesis. While Chapters 4—11 present self-contained, peer-reviewed publications, this
chapter serves as a unifying introduction to the broader context. We begin by introducing
satisfiability solving and model checking, which form the core theoretical and practical
underpinnings of the work presented in this dissertation.

2.1 SAT Solving

We provide a brief introduction to the Boolean satisfiability (SAT) problem. The
standard logical connectives are denoted by the symbols — (negation), — (implication),
<> (equivalence), A (conjunction), and V (disjunction).

* A literal is either a Boolean variable or its negation.
* A clause is a set of literals combined by disjunction.
* A formula in conjunctive normal form (CNF) is a conjunction of clauses.

* An assignment o : V — 1 T is a partial function mapping variables to truth
values L, T (false, true). Extending an assignment means assigning additional
variables without changing the truth values of already assigned ones.

Further, VAR(F') denotes the variables of a formula F', i.e., ¢ € VAR(F) if either £ or —¢
appears in one of the clauses. A formula under an assignment evaluates to the result of
basic simplification after replacing positive literals with their assigned truth values and
negative literals with the negation of the assigned values. If the assignment is total—i.e.,
every variable is assigned—the formula evaluates to either true or false.

The satisfiability problem asks whether there exists an assignment for the variables
of a given formula such that the formula evaluates to true. If at least one such assign-
ment exists, the formula is satisfiable (SAT); otherwise, it is unsatisfiable (UNSAT). A
satisfying assignment to all variables is also called a model of the formula.

When we encode some statement as a Boolean formula that evaluates to true exactly
when the statement holds, we also refer to such a formula as a predicate. Conversely,
when no particular meaning is attached to the truth value of a formula, we also refer to
it as a Boolean function.



Example 2.1. Consider the Boolean formula ¢ = (a — —b) A (a — b). A satisfying
assignment for this formula is @ — L, b+ T. Therefore, ¢ is satisfiable. In contrast,
consider ¢ = a A (a — —b) A (a — b). No assignment satisfies ¢, so it is unsatisfiable.

The formulas in the example above are not in CNF. Any Boolean formula can be
converted into CNF by eliminating implications (—) and applying Tseitin transforma-
tion [36]. Since A — B is equivalent to = A V B, implications can be systematically
eliminated to facilitate CNF conversion. Equivalences (++) can similarly be translated
into two clauses.

State-of-the-art SAT solvers employ conflict-driven clause learning (CDCL) [37] in
combination with inprocessing. The CDCL algorithm guesses sensible assignments to
individual variables, considers their consequences, and if a conflict is found, learns a
clause that prevents the same from happening again. The solver either eventually derives
the empty clause (proving unsatisfiability) or successfully assigns all variables without
conflict (yielding a model). Inprocessing is interleaved with the search and transforms
the formula into an equisatisfiable one that is hopefully easier to solve. Further details
are presented in Chapter 4.

Besides solving individual formulas, incremental SAT solving allows the user to
efficiently solve a sequence of related SAT problems. For many problems it is necessary
to use information from a previous query to the solver to slightly extend the formula.
This is especially true for problems which are hard for a complexity class exceeding NP
or coNP, such as the PSPACE-complete model checking problem. See Chapter 5 for an
introduction to incremental SAT solving.

Another task that builds on SAT solving is backbone extraction, which asks not only
whether a satisfying assignment exists, but also which literals are true in every such
assignment. We discuss backbone extraction in detail in Chapters 6 and 7.

2.2 SAT Solving Certificates

SAT solvers are widely used in applications where correctness is critical. Together with
the fact that SAT solvers are complicated pieces of software, the need arises to convince
users that their results are trustworthy.

Certification essentially means providing a witness that reduces the complexity of
a problem to the point where a verifier can be convinced that it has been solved. For
satisfiable CNF formulas, this is a simple task: the model serves as the certificate and
can be checked by going over the formula clause by clause. This verification is simple
to implement and runs in linear time, in contrast to the NP-hardness of the satisfiability
problem itself. If the formula is unsatisfiable, the task becomes significantly harder as
outlined below.

When a SAT solver determines unsatisfiability, it generates a deductive proof for the
correctness of this result. These proofs can then be checked by independent tools known
as proof checkers. To facilitate this process, it is important to establish a fixed format
which is expressive enough to describe the techniques employed by the SAT solver,
and at the same time simple to check. Proof checkers fall into two broad categories:



verified and unverified, or colloquially: correct and fast. Verified proof checkers are
developed within interactive theorem provers such as Isabelle [38] or in formally verified
language implementations such as CakeML [39]. They provide strong guarantees of
correctness but are complex to implement and difficult to optimize for performance. On
the other hand, unverified proof checkers are comparatively simple C programs that rely
on the relative simplicity of the proof checking task to increase trust in the certified
result. Additionally, the intuition that an incorrect proof checker would only accept an
independently produced buggy proof if the flaws in both align precisely results in a kind
of “quadratic improvement in trust”.

A number of different proof formats have been established. They differ in how
expressive they are, and often come in a variant with and without annotations to make
proof checking easier. At the lower end of expressiveness we have DRUP which
combines reverse unit propagation (RUP) [40] with the deletion of clauses. In this case,
the aforementioned annotations are the clauses which are involved in the propagation.
If they are included the format is called LRUP and proof checking is linear-time.
Judging by the winners of the SAT competition [14], all practically relevant SAT-solving
techniques can be expressed using RUP. That is until the competition in 2023, where
a rather rudimentary combination of the SAT solver CaDiCaL with bounded variable
addition (BVA) [41] won the competition. Since then, both CaDiCaL and Kissat—two
of the strongest SAT solvers developed over the past decade—have implemented BVA.
This is noteworthy as the impressively efficient and verified proof checker Irat_isa [38]
only supports LRUP and thus can no longer be used with CaDiCal. when BVA (enabled
by default via ——factor) is active.

The long-standing standard format is DRAT [42], with its linear variant LRAT [43],
implemented in the widely used unverified tools DRAT-trim and LRAT-trim. Moving
further up in expressiveness we have propagation redundancy (PR) [44], supported
by the verified tool cake_lpr [39]. Lastly, VeriPB [45] extends to the pseudo-Boolean
domain and further features strong proof rules [46].

2.3 Model Checking

Model checking verifies whether the model of a system satisfies a given property.! In
this thesis, we focus on safety properties.

Example 2.2. Consider a simple transition system modeled using two Boolean variables
a and b. The initial state is state 0, encoded symbolically as —a A —b. We are interested
in verifying the property —a V —b, which is violated only by state 3 (i.e., when a A b
holds). However, since state 3 is not reachable from the initial state, the model is safe.

"Note that the term model here is not the same as a satisfying assignment for SAT formulas. In the context
of neural networks, the term has yet another meaning.




A transition system is typically defined as a tuple M = (V, I, T, P), where:
* V is a finite set of state variables;
» I(V) aformula over V' encoding the set of initial states;

« T(V,V') a formula encoding the transition relation, where we use the primed
variables V' to denote the next-state variables;

* P(V) aformula encoding the set of good states, where the property holds.

Safety properties such as P are characterized by having finite counter examples —
sequences of states from an initial state to a state violating P, also called bad traces.
Such a counterexample corresponds to a model of the formula (for some k):

I(s0) AT(s0,81) A= AT(sp—1,8) A \/ —P(si).
1€[0,k]

Solving this formula for increasing values of k using a SAT solver forms the core of the
well-known Bounded Model Checking (BMC) algorithm [47].

These counterexamples can be viewed as certificates for unsafe instances of the model
checking problem, analogous to satisfying assignments for SAT formulas. However,
unlike satisfying assignments, counterexamples may be exponentially large—up to 2!V
states.

To prove that a model checking problem is safe using bounded model checking the
formula above would need to be shown unsatisfiable for & = 2/V'|. This is infeasible for
all but the smallest systems which is why bounded model checking is usually considered
incomplete, meaning that it is only used to find counterexamples, not to prove their
absence.

However, other model checking techniques such as k-induction [48] and IC3 [49] 2
are complete and can generate certificates for safe model checking instances.

2.3.1 Circuits

In Chapters 8, 9, 10, and 11, we use Boolean circuits—rather than transition systems—to
describe models.

The main motivation for using the circuit formalism described below, is that it
closely aligns with the AIGER [50, 51] format used in the Hardware Model Checking
Competition [20] and in industrial practice.

In principle, any system that can be modeled as a transition system can also be
expressed as a Boolean circuit, however, they are particularly well-suited for describing
hardware designs, such as CPUs. They further come with a number of structural
restrictions natural for such designs, which we will use in Chapter 9 to generate smaller
certificates and check them more efficiently.

A sequential Boolean circuit is defined as a tuple M = (I, L, R, F, P,C), where:

2See also Chapter 5.



* Inputs /. A finite set of primary input variables modeling the environment. These
are the only source of nondeterminism and can be treated as randomly assigned at
each step. A subtlety is that in many visualizations (e.g., Chapters 5, 9, 10), only
latch values are depicted, while input variations are shown via multiple transition
edges per state. In these examples, the safety property P typically depends only
on the latch variables L to avoid confusion.

» Latches L. A finite set of state-holding variables. A state of the circuit is defined
by an assignment to inputs and latches. We collectively refer to inputs, latches,
and their negations as the literals of a circuit.

* Reset Functions R. Every latch ¢ is associated with a reset function r; in R. The
ry are Boolean functions over [ and L, so have a fixed value for a given state. The
predicate

R{L}= N\t
lel

holds if all latches take their reset values, i.e., the state is an initial (reset) state.

¢ Transition Functions F'. Each latch ¢ € L has a transition function f;, determin-
ing its next value based on I and L. The transition predicate

Foi{L} = N (&e & fe(lo, Lo)),
teL

references two successive states. We adopt the convention of indexing formu-
las (e.g., Ry or Fp 1) to refer to specific time steps without explicitly indexing
variables.

In AIGER, reset and transition functions are encoded using AND gates and
negations. We abstract away from this representation except in Chapter 8, which
focuses on ternary simulation and relies on the circuit’s structure.

* Property P. A Boolean predicate over the circuit state characterizing the set of
good states (i.e., a safety property).

¢ Constraint C'. A Boolean predicate that restricts the set of admissible states,
typically used to model environment assumptions. Many models do not have a
constraint (C' = T), which has useful consequences: every state has at least one
successor, and every finite trace can be extended to an infinite one.

A bad trace in a circuit corresponds to:

Ro A /\ Fi,i—f—l VAN /\ C; N =P,
1€[0,n) 1€[0,n]

In the above definition we already mentioned the concept of dependency. We define
two types of dependency a Boolean function can have:



» Syntactic Dependency. A Boolean function f is syntactically dependent on
literal £ if £ € VAR(f).

* Semantic Dependency. A function f semantically depends on £ if there exist two
assignments that differ only in £ and yield different evaluations of f. Semantic
dependencies form a subset of syntactic ones.

We also define a desirable structural property for reset functions:

Stratified Reset. A set of reset functions R is stratified if they have no cyclic dependen-
cies. To check this condition efficiently, we use the syntactic definition of dependency:
construct the graph G = (L, {(u,v) | v € VAR(ry)}) and check whether it is acyclic.

In AIGER circuits, this corresponds to ensuring that the graph—where each AND
gate has edges to its inputs, and each latch has an edge to its reset—is acyclic.

The benefit of stratified resets is that a reset state always exists, since a model of
R{L} can be constructed by assigning latches in reverse topological order. More than
that, given a subset K of the latches L, with an assignment s satisfying R{K}, if a
topological ordering of L, ending in K exists, s can be extended to satisfy R{L}.

For transition functions, a similar argument comes more easily: Given K C L and
an assignment s to Lo U K that satisfies Fip ; { '}, s can be extended to an assignment
over Lo U L; satisfying Fyp 1 {L}.

These two restrictions—stratified reset and total transition functions—are what we
claimed come naturally at the beginning of this section and allow us to make model
checking certification more efficient. See Chapter 9 for further discussion.

2.4 Model Checking Certificates

The same arguments that make certificates necessary for SAT solving apply to model
checking— arguably even more so, as model checkers are often composed of multiple
engines running distributed across machines over the course of several days. Moreover,
they frequently rely on composing multiple other formal tools to solve subproblems.

A significant part of this thesis is devoted to the question of what model checking
certificates should look like, such that they cover a wide range of techniques and can
be checked efficiently. For now, we only mention that the certificates themselves are
also circuits, and checking their validity is reduced to checking the validity of five SAT
formulas. Further, the construction of these formulas is linear in the size of both the
model and the certificate. Details are presented in Chapter 9 and Chapter 10.

With these few details in place, let us consider the complexity implications of model
checking certification: The class NP can be characterized as the set of problems for
which a certificate exists that is polynomial in the input size and can be verified in
polynomial time. SAT solving—that is, the question of whether a satisfying assignment
exists—is the canonical NP-complete problem [52, 53], meaning it is as hard as any
problem in NP. Conversely, proving that all assignments do not satisfy a formula (i.e.,
unsatisfiability or validity) is coNP-complete. Together with the class P, these classes
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form the first three levels of the polynomial hierarchy. Each additional level corresponds
to adding one more quantifier to a SAT formula in an alternating fashion. At the top
of this hierarchy lies PSPACE— the class of all problems solvable using polynomial
space— whose canonical problem is quantified Boolean formula (QBF) evaluation [54].

We currently have no proof that this polynomial hierarchy is real at all, i.e., we do
not know of a single problem that is in PSPACE but provably not in P. Nevertheless,
showing that some result would make two levels of the hierarchy equally hard, and thus
collapsing the hierarchy at that level is considered a strong indication that the result does
not hold. For instance, we do not expect unsatisfiability certificates to be polynomial
in size; if they were, NP would equal coNP, collapsing the polynomial hierarchy at the
second level.

We can make a similar argument for model checking certificates: If a complete
model checking algorithm produced polynomial-size witnesses for safe instances, the
polynomial hierarchy collapses to the second level. To justify this result, we first show
that model checking circuits is PSPACE-complete.

We can perform model checking with a nondeterministic Turing machine by con-
structing the initial state, nondeterministically choosing inputs, and computing the next
state. Each transition increments a counter. Once this counter reaches 2!/l, the machine
halts. If at any point a bad state is encountered, the machine accepts. By Savitch [55],
the space requirements for a deterministic Turing machine only increase quadratically.

On the other hand, consider a closed QBF formula of the form

Ve, Ixn—1 ... 3x0. f(zn, ..., 20),

where f is a Boolean function. We construct a circuit that is safe if and only if the
formula is valid. Each variable x; corresponds to a latch c;, transitioning like a binary
counter with cg as the least significant bit. Additionally, each x; is associated with a
bookkeeping latch b;, initialized to T if x; is universally quantified and to L otherwise.
Further:

bi, ifei ¢ [, biV i1, if z; is existentially quantified
fo, =94 L, ifciA=fe, 4 =

q;, otherwise

b; A\ gi—1, if x; is universally quantified

where ¢_; is identified with an encoding of f(cy, ..., cp).

The bookkeeping latches b; encode whether the formula is currently satisfied, consid-
ering only the quantifiers within the scope of x;. The property P = V¢[g,n)7¢; V by, then
fails if the full formula is not satisfied after the counter reaches saturation. Thus, exactly
if the QBF formula is not valid. Since the QBF problem is PSPACE-complete [56], we
have proven the same for our model checking problem.

Returning to the question of polynomial-size witnesses: Consider a nondeterministic
Turing machine with access to an NP oracle. Such a machine could decide any model
checking instance by guessing a polynomial-size certificate, constructing the associated
SAT formulas, and querying the oracle to verify their validity.

11



We are therefore content with certificate constructions that are exponential in the
worst case. Especially since their size tends to be very manageable in practice, as
discussed in Chapter 11.

Finally, note that the circuit used to establish PSPACE-hardness does not use inputs.
Thus, the construction also proves that ternary simulation (as defined in Chapter 8)
is PSPACE-complete. It further implies that validating counterexample traces is also
PSPACE-complete. The former motivates the widening technique introduced in Chap-
ter 8, and the latter motivates future work on compact formats for counterexamples.
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Chapter 3

Discussion on Published Work

This chapter provides an overview of the peer-reviewed papers presented in the remainder
of the thesis and discusses their relation to each other. In addition to the two main
topics that give the thesis its title—SAT and model checking— the evaluation of tools,
particularly in the form of competitions, is a pervasive theme throughout. Figure 3.1
illustrates how each paper relates to these three central areas.

Evaluation

[15] Museum
[14] SAT’20

11 HWMCC’24

4 CaDiCaL 2.0 9 Phase
Abstraction

[1] Closure 5 Clause
[2] Sweeping ~ Assumptions

10 Constraints

7 BIG Backbone 8 Ternary
Simulation

SAT Model Checking

Figure 3.1: Overview of papers. Those with chapter marks are included in this thesis.

The foundation of this thesis lies in efficient SAT solvers. Because model checking in-
herently requires incremental SAT solving', the state-of-the-art incremental SAT solver
CaDiCaL serves as the SAT backend in our model checker and other tools. Chapter 4
presents version 2.0 of CaDiCaL, focusing on proof production and incremental solving
techniques. The paper includes a comprehensive evaluation of CaDiCaL and compet-
ing solvers across multiple incremental applications such as backbone extraction and
bounded model checking.

There are two additional papers, of which I am a co-author but are not included in the
thesis, which are highly relevant for the question of how to improve SAT solving for

'Since model checking is PSPACE-hard, we do not expected to solve it with a single SAT query in NP.
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model checking: Clausal Congruence Closure [1] and Clausal Equivalence Sweeping [2].
The former extracts structural information from CNF and applies congruence closure to
identify isomorphic subcircuits. The latter implements SAT sweeping [57] directly at
the CNF level to detect equivalent gates. We include an evaluation of these techniques
in Appendix 11.6, focusing on their impact on certificate validation.

The idea of optimizing SAT solving specifically for model checking is exemplified
in Chapter 5, which presents an extension to the incremental SAT solver interface that
speeds up a particular model checking algorithm. This extension was implemented in
CaDiCaL and is now being considered for the next IPASIR interface revision [58]. While
originally developed for a specific purpose, it has since gained widespread adoption.

Backbone extraction, while not directly associated with model checking, plays a
useful role in some preprocessing techniques. Chapter 6 introduces the backbone
extraction tool CADIBACK. It was originally developed because the third author needed
to label backbones as a feature for a machine learning application. Since then it has
become a critical component in every model counter participating in the competition,
including the winner GANAK [59]. CadiBack reimplements existing algorithms using
modern SAT technology, yielding significant performance improvements. Interestingly,
clause assumptions—introduced for model checking—are heavily used in CadiBack
and may be even more beneficial in this setting.

For our own work, it is often unnecessary to extract the complete backbone. Chapter 7
presents a polynomial algorithm for extracting the backbone from the binary implication
graph, along with theoretical results that establish the completeness of the approach for
a specific class of formula.

Ternary simulation is a core technique in model checking. Chapter 8 formalizes
ternary simulation as abstract interpretation and introduces novel widening and narrow-
ing operators based on clause subsumption and backbone information.

Phase abstraction is a preprocessing technique that unfolds a circuit along the temporal
dimension and eliminates clock signals. It starts out by finding an overapproximation of
the states reachable in certain clock cycles using ternary simulation. The generalized
version presented in Chapter 9 makes use of the techniques introduced in Chapter 8
to consider multiple such approximations and select the one that minimizes circuit
complexity. The main focus of this chapter is how to extend the trust we can put into
a model checker using complex preprocessing techniques like phase abstraction and
temporal decomposition.

Constraints restrict the set of admissible circuit states, which breaks some desirable
properties we described at the end of Chapter 2. Chapter 10 proposes relaxed checks
to allow complex constraints in certificates. However, this requires a shift from SAT to
QBF-based checking, which is less scalable. Since most model checking algorithms
can produce certificates without needing constraints, SAT-based checking remains the
default. A “long-standing” problem in our very specific field of work was how to certify
k-induction under uniqueness constraints [12], which Chapter 10 addresses. While the
solution works, it requires quantified induction and does not scale well.

Our efforts on model checking certification culminated in the introduction of manda-
tory certificates to the hardware model checking competition in 2024. Despite our prior
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concerns, the competition sported more participants than ever before. The certificates
produced were small, fast to check, and—most importantly—did not hinder perfor-
mance: the winner outperformed the previous state of the art even when accounting for
certificate validation. Details are presented in Chapter 11.

I contributed to two further works focused on competition and evaluation: a journal
paper discussing the SAT competition in 2020 [14], and the SAT Museum [15], which
compares current and historical SAT solvers. For these I provided a statistical evaluation
of the similarity between solvers and further used statistical measures to judge the impact
of the benchmark selection on the outcome of the competition.

The four papers mentioned here, but not included in this thesis, complement the
overall presentation and provide additional context. They are omitted as the author’s
contribution to them was minor.
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Chapter 4
CaDiCaL 2.0

Published In International Conference on Computer Aided Verification (CAV) 2024

Authors Armin Biere, Tobias Faller, Katalin Fazekas, Mathias Fleury, Nils Froleyks,
and Florian Pollitt
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Abstract The SAT solver CaDiCaL provides a rich feature set with a clean library
interface. It has been adopted by many users, is well documented and easy to extend
due to its effective testing and debugging infrastructure. In this tool paper we give a
high-level introduction into the solver architecture and then go briefly over implemented
techniques. We describe basic features and novel advanced usage scenarios. Experiments
confirm that CaDiCaL despite this flexibility has state-of-the-art performance both in a
stand-alone as well as incremental setting.
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4.1 Introduction

Progress in SAT solving has a large impact on model checking, SMT, theorem proving,
software- and hardware-verification, and automated reasoning in general, and, according
to “The SAT Museum” [15], SAT solvers get faster and faster, at least on benchmarks
consisting of a single formula. For incremental SAT solving it was less clear, particularly
as preprocessing [60] and inprocessing [61] heavily contributing to this improvement
were considered incompatible with incremental solving (the winners of the SAT compe-
tition main track rely on inprocessing since 2009 except in 2011/2012/2016 and since
2005 all on preprocessing).

A simple and elegant solution to this problem is due to the award winning incremental
SAT solving approach [62] first implemented in CADICAL. It reverts clause removal,
i.e., restores clauses removed during pre- and inprocessing, restrictively on a case-by-
case basis. It allows incremental solving to make full use of pre- and inprocessing
techniques, in contrast to less general solutions [63-66], without reducing their effec-
tiveness nor burden the user to “freeze” and “melt” variables (“Don’t Touch” variables
in [67]) as necessary with MINISAT [68].

This is the first tool paper on CADICAL, while previous, actually well cited, de-
scriptions appeared only as system description in non-peer-reviewed SAT competition
proceedings [69-74]. In general, even though “SAT is considered a Killer app for the 21
century” (Donald Knuth), there are few tool papers on SAT solvers, with the prominent
exception of MINISAT [68], which appeared in 2003 and was awarded the test-of-time
award at SAT’22. The descriptions of CRYPTOMINISAT [75], GLUCOSE [76] and
INTELSAT [77] introduce the corresponding SAT solver and can be considered to be
tool papers too though.

Development of CADICAL was triggered by discussions at the “Theoretical Foun-
dations of SAT Solving Workshop” in 2016 at the Fields Institute in Toronto, where
it became apparent that both theoreticians and practitioners in SAT have a hard time
understanding how practical SAT solving evolved, what key components there are in
modern SAT solvers and, most importantly, that it was apparently getting harder and
harder to modify state-of-the-art solvers for controlled experiments or to try out new
ideas. With CADICAL we tried to change this, thus the main objective was to produce
a clean solver, with well-documented source code, which is easy to read, understand,
modify, test, and debug, without sacrificing performance too much.

The first goals were achieved from the beginning and performance improved over
the years. After its introduction in 2017 CADICAL continued to achieve high rankings
in yearly SAT competitions, e.g., in 2019 it solved the largest number of instances in
the main track, but scored less than the winner. It never won though except for the
most recent SAT competition in 2023 where CADICAL was combined with a strong
preprocessor employing bounded variable addition [41, 78]. The competition organizers
paraphrased this as “CADICAL strikes back™.

Moreover, with the show-case of our new incremental approach [62] we invested in
increasing the feature set supported by CADICAL culminating for now in supporting
“user propagators”. This for instance allowed to replace the original but highly modified
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MINISAT based SAT engine in cvc5 by CADICAL, as described in a recent well-
received SAT’23 paper [79].

The users of CADICAL fall into three categories. A first group applies the solver out
of the box on benchmarks where CADICAL turns out to have superior performance. As
an example consider solving mathematical problems with the help of SAT solving such
as [80-83]. Second, there is an increasing user base, including [6, 62, 79, 84-89], which
relies on the rich application programmable interface (API) provided by CADICAL,
particularly its incremental features. Third, there are research prototypes modifying or
extending CADICAL to achieve new features, including [41, 90-94]. Some of these
modifications have been integrated [43, 95] but others remain future work [41].

Finally, CADICAL is used as a blue-print for understanding, porting, and integrating
state-of-the-art techniques into other solvers. In this regard we are in contact with
companies in cloud services, hardware design, and electronic design automation. It
was also consulted in developing ISASAT [96], the only competitive fully verified SAT
solver. Furthermore CADICAL was adopted as template solver for the “hack track” of
the yearly SAT competition since 2021 as an “easy to hack” state-of-the-art SAT solver.

Related SAT solvers in the SAT competition often lack documentation, are hard to
extend and modify, and, most importantly, do not provide such a rich and clean library
interface as CADICAL. For instance our SAT solver KISSAT [72] falls into this category.
It has been dominating the SAT competition 2020-2022 (in 2022 all top-ten solvers
were descendants of KISSAT), is more compact in memory usage and often faster on
individual instances, but is lacking support for even the most basic incremental features
such as assumptions.

The majority of the solvers in the SAT competition are restricted in their feature set as
they are tuned for stand-alone usage, i.e., running the solver on a single formula stored
in a file in DIMACS format [97], even though there is occasionally an incremental track
in the SAT competition (last one that really took place was in 2020 as the one announced
in 2021 was later cancelled).

Prominent SAT solvers with a richer feature set and particularly supporting incre-
mental solving, beside the rather out-dated MINISAT [68], are newer versions of
CRYPTOMINISAT [75], and GLUCOSE [98]. The former is actively developed and
in terms of implemented techniques has quite some overlap with CADICAL. In addition
it offers special support for XOR reasoning, solution sampling and model counting [99].
The GLUCOSE solver has been improved for incremental solving [100] but is not com-
parable in terms of implemented techniques nor features.

Unique and non-common features of CADICAL include: literal flipping [6], single
clause assumption [5], incremental solving without freezing [62], extensive logging
support, record & play of API calls, model-based testing, internal proof and solution
(model) checking, termination and clause learner interfaces, various preprocessing
techniques, an online proof tracing interface, formula extraction (after simplification),
support of many external proof formats (DRAT, LRAT, FRAT, VeriPB) [43], and last
but not least the user propagator [79].

This paper is structured by describing in the next section the architecture of CADICAL,
which also acts as a summary of integrated techniques and provided features. The rest
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TESTING & MONITORING INFRASTRUCTURE (Sect.

MosBICAL (Model Based Tester), solution checker, proof checkers, regression tests, logging
STATIC API -~ EXTERNAL —DYNAMIC API
Proofs (Sect. 4.4) Reconstruction
DIMACS [97], DRAT [101],  FRAT [90], weaken / restore [62] ExternalPropagator
iCNF [124] LRAT [102], VeriPB [103] extend [104] [79, 125, 126]
parsers (Sect. 4.3)
J7compact

IPASIR Tracer

functions [58] INTERNAL (Sect. 4.5)

Preprocessing/Inprocessing [60, 61]

BVE [105], vivify [74, 106, 107], ELS [108],
freeze/melt [67] instantiate [74, 109], probing [110], subsume [60],
lucky phases [71], CCE [111, 112], BCE [113],
ILB [77] random walk [114], gate elimination [105],
transitive reduction [115], ternary resolution [110],
globally blocked clauses [116]
flipping [6], Iterators
constrain [5] Search
(Sect. 4.6) chrono [117, 118], rephase [114], phase saving [119],
shrinking [95], minimize [95], trail reuse [120],

on-the-fly-subsumption [121-123]

Figure 4.1: An overview of the main components of CADICAL.

of the paper consists of highlighting recently added features of the solver or features not
presented before, followed by experiments showing that CADICAL has state-of-the-art
performance, before concluding.

4.2 Architecture

CADICAL is a modern SAT solver with many features written in C+. It can be used as
stand-alone application through the command-line interface (CLI) or as library through
its application programming interface (API) in C+ (or in limited form in C). Fig. 4.1
depicts a structural overview. The central component, called Internal, implements
CDCL search [127, 128] and formula simplification techniques [60, 61]. On top of it,
the External facade hides the internals while maintaining the proofs and solutions
(aka models) of solved problems.

The heart of the solver is the function cdcl_loop_with_inprocessing in
Internal which interleaves the CDCL loop with formula simplification steps (i.e.,
with inprocessing [61]). During Search, CADICAL supports several techniques, like
chronological backtracking [117, 118], rephasing [114], and shrinking [95], which are
only some of the important features. See Fig. 4.1 for more references.

The CDCL loop [128] is scheduled to be preempted in regular intervals to let the
solver apply various formula simplification [60] and inprocessing techniques [61].
Each technique is implemented separately (e.g., in file subsume . cpp) and has (i) a
corresponding function which determines if the solver should preempt CDCL search
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and apply the technique (e.g., subsuming () ) and (¢7) a function that actually applies
the technique (e.g., subsume () ).

As Fig. 4.1 shows, CADICAL implements a variety of preprocessing/inprocessing
techniques, including bounded variable elimination (BVE) [105], arguably the most
effective one. As further examples, CADICAL also supports vivification [106, 107] and
instantiation [109]. Combining them [74] won the CADICAL “hack track™ 2023.

The External component communicates with Internal by mapping active
variables into a consecutive sequence of integers (compacting) and extends internal
solutions back to complete solution of the input problem with the help of the reconstruc-
tion stack [104]. In incremental use cases External also keeps the reconstruction
stack clean [62] by “undoing” previous inprocessing steps. Beyond that, External
connects internal and external proof generation (see Sect. 4.4).

We distinguish two types of API usage in CADICAL: static and dynamic. The
static API provides access to standard solver functionalities between SAT solving
calls (like IPASIR [58], parsing DIMACS, or iCNF files). With ILB as proposed by
INTELSAT [77], we try to keep the trail unchanged between incremental calls.

The dynamic API interacts and controls the solver during Search. The solver pro-
vides dynamic access to clauses learned during conflict analysis to connected Learner
instances. The Terminator class interface allows users to asynchronously terminate
the solving procedure. Through the Tterator interface of CADICAL, the user can
iterate over the irredundant (simplified) clauses of the problem or can iterate through
clauses on the reconstruction stack, supporting simplified formula extraction and external
model reconstruction.

4.3 External Propagator

Applications of CADICAL, for example within the SMT solver cvc5 [87] (and maybe
in the future within other lazy SMT solvers, such as Z3 [129] or Yices [130]), or to
support Satisfiability Modulo Symmetries (SMS) [79, 131], require more control over
the solver than provided by the standard incremental IPASIR interface [58]. To this
purpose CADICAL supports a more fine-grained and tighter integration into larger
systems by allowing an external user propagator [125, 126, 132] to be connected to it
through the IPASIR-UP interface [79].

This abstract interface is defined in the ExternalPropagator class which pro-
vides corresponding notification and callback functions. Inheriting from this class
allows users to implement dedicated external propagators which for instance import and
export learned clauses or suggest decisions to the SAT solver. The full description of
functionalities supported by the IPASIR-UP interface is available in [79]. Here we focus
on CADICAL-specific implementation details.

First, CADICAL ensures that only external variables appear in the IPASIR-UP inter-
actions, thereby allowing users to ignore the internal (compacted) details. Furthermore,
CADICAL employs preprocessing and inprocessing even when an external propagator is
connected. To avoid the need to restore clauses during the CDCL loop and to ensure that
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solution reconstruction [104] does not change assignments of observed variables (i.e.,
relevant to the external propagator), every observed variable is automatically frozen. As
a side effect, the external propagator can only set clean [62] variables as new observed
variables during search. As fresh variables are always clean, this is acceptable and
mostly sufficient in practice.

Finally, CADICAL, by default, considers every external clause as irredundant, exactly
as the original input clauses of the problem. Thus, during clause database reduction
they are not candidates for removal and so can be deleted only when implied by the
rest of the formula. In future work we plan to allow users to specify the redundancy
of the external clauses and to support incremental inprocessing [62] even for variables
observed by the external propagator.

4.4 Proofs

Unsatisfiability proof certificates are an integral part of SAT solving [133, 134]. Even
though clausal proofs were introduced in 2003 [68, 135], checking large proofs only
became viable with deletion information [40]. The most prominent format today is
DRAT [101] which was mandatory in the SAT competition from 2016 [136] to 2022. In
2023 both DRAT [101] and VeriPB [103] were allowed in the competition [137].

The proof formats GRAT [138] and LRAT [102] were proposed to allow even faster
proof checking, i.e., by trading time for space, but also to facilitate formally verified
proof checkers (e.g., CAKE_LPR [39]). They require hints for clause additions in form
of antecedent clause identifiers (ids). External tools like DRAT-TRIM [101] can add
such hints in a post-processing step to DRAT proofs.

The proof formats DRAT [101], FRAT [90], LRAT [102], and VeriPB [103] are
supported by CADICAL. It is the first solver to support LRAT natively. Without the
need for post-processing this reduces proof checking time [43] substantially.

Recent diversification of proof formats in the SAT competition [137] motivated us to
add VeriPB. It is a general proof format for various applications [103, 139, 140]. The
tool-chain for checking SAT solver proofs with the verified VeriPB backend [103] is
under development and not fast enough yet. Actually, BREAKID-KISSAT [137], one of
the top performers in the SAT competition 2023, lost due to multiple timeouts during
proof checking. Similarly to FRAT, CADICAL can provide antecedents in VeriPB
proofs. We expect this to speed up VeriPB proof checking considerably.

4.5 Tracer Interface

The dynamic API allows to extract proof information from CADICAL online without
files by connecting user-defined tracers as instances of the virtual C+ class Tracer.
It provides notifications and callbacks for proof-related events, such as addition and
deletion of clauses. Proof writers for all formats (Sect. 4.4) as well as both internal
proof checkers (Sect. 4.8) go through the Tracer class. Furthermore, there is ongoing
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void add_derived_clause (uint64_t new_id, bool redundant,
const vector<int> & literals_of clause,
const vector<uint64_t> & antecedent_ids);

Figure 4.2: Tracer virtual callback function to add a derived clause to the proof.

work to produce VeriPB proofs for the MaxSAT solver Pacose [141] using the Tracer
interface in CADICAL.

We support a large set of event types covering a multitude of use cases. Information
provided includes antecedent ids and literals of clauses, separation between original,
derived, and restored [62] clauses, and information of clause redundancy, as well as
weakening [61] and strengthening [61, 103]. For example, Fig. 4.2 shows the callback
function for the proof event of adding a derived clause, where “derived” means
entailed by the formula (i.e., not original input clause). Additional notifications include
reserving ids for original clauses, as used for generating file based proof formats, such
as VeriPB and LRAT.

For each solve call, a concluding event gives precise information about the result: a
model concludes satisfiable instances, whereas for unsatisfiable instances we provide in-
formation about the final conflict clause. We have recently started to explore incremental
proof tracing as well [142, 143].

4.6 Constraints and Flipping

SAT solvers are used in a wide range of applications in many different ways. For incre-
mental solving, MINISAT has been the predominant choice. However, in recent years,
CADICAL has begun to replace MINISAT in numerous applications, most prominently
cvch. This can be attributed to its overall better performance and various application-
specific features unique to CADICAL.

A prime example is the constraint feature [5], which allows users to define a temporary
clause with the same lifespan as assumptions. It was initially developed to support
the SAT based model checking algorithm IC3 [49], which requires often millions of
incremental SAT calls during a single run, where each query needs to assume a single
clause valid only for that call.

Constraints do not introduce new functionality per se, as temporary clauses can
be simulated by activation literals. But they do allow the solver to employ a more
efficient implementation, as they particularly avoid to introduce those assumption
variables. Beyond IC3, constraints have also proven useful in our backbone extractor
CADIBACK [6]. The purpose of using constraint in backbone extraction is to find
maximally diverging models in order to eliminate backbone candidates fast. CADIBACK
uses constraints to ensure that each new model includes at least one literal not observed
in previous models. If this is not possible, all unseen literals are immediately determined
to be in the backbone.

Once a model is found, we use another feature called literal flipping [144] to eliminate
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further backbone candidates [6]. A literal is flippable if toggling its value also results in
a model. This concept was employed to speed-up backbone MINIBONES [145] before
and also MUS extraction [146]. In these earlier works it was implemented by iterating
over all clauses outside the SAT solver, searching for literals that can be flipped in the
model provided by the solver. Using clause watching our implementation inside of
CADICAL is much more efficient.

4.7 Interpolation

Software-based test generation targeting RISC-V in the Scale4Edge project [147] relied
on interpolation-based model checking and MINICRAIG to generate interpolants. It uses
MINISAT as SAT solver and in this application constitutes a performance bottleneck.
Therefore we developed a new more scalable solver CADICRAIG based on CADICAL
and its proof tracer API (Sect. 4.5).

The implementation of CADICRAIG is external to CADICAL. It uses the same
interpolant construction as in MINICRAIG but is now separated from MINISAT. We
are not aware of any other modern open-source SAT solver which allows to build
interpolants through a generic API without being forced to write the whole proof to a
file, trimming and post-processing it on disk, such as in [148].

The CADICRAIG tracer constructs partial interpolants as usual, e.g., see [149].
Through the proof tracer API the tracer is notified by CADICAL about each new clause
and its antecedents needed to derive it by resolution. It then builds a partial interpolant
for that clause using previously computed partial antecedent interpolants. When the
solver concludes deriving an empty clause and thus showing unsatisfiability (Sect. 4.5)
the final interpolant is built from the antecedents of the empty clause. It can then be
retrieved by via the CADICRAIG APL

4.8 Testing and Debugging

Such a sophisticated and complex software as CADICAL necessitates rigorous testing
to ensure correctness of interactions between its multitude of features. In this section
we discuss our arsenal of essential testing and debugging techniques.

First, we primarily rely on logging for debugging purposes. For instance, when
enabled, CADICAL will print every single step from its creation to its deletion. From
an implementation perspective, logging features are not compiled in by default to avoid
performance overhead in release builds. Furthermore, if enabled at run-time, CADICAL
prints verbose information about the inprocessing schedule, useful for debugging perfor-
mance regressions (e.g., inprocessor scheduling).

Further useful debugging tools are the built-in checkers. The LRAT and DRAT
checkers are optional and ensure that every learned clause is properly derived. The new
LRAT checker [43] was crucial for achieving LRAT support.

Last but not least we want to mention the API fuzzer MOBICAL, which generates
random API calls and minimizes failing runs. Internally, MOBICAL implements a state
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machine issuing API calls. It also performs option fuzzing by varying available options.
This approach is extremely useful to produce short failing API call traces focusing on
the actual defect, e.g., like picking a low garbage collection limit to trigger a defect in
the garbage collector. Combining checkers with MOBICAL greatly increases its strength.
During development it is advisable to build MOBICAL and CADICAL with assertions
and checkers enabled.

MOBICAL is similar in spirit to the related model-based tester of LINGELING [150]
for SAT and BTORMBT [151] and MURXLA [152] targeting SMT. Note that other SMT
fuzzers [153-156] focus on non-incremental usage or only support incremental “push
& pop” [157]. For non-incremental SAT solving, there is also CNFFUZZ fuzzer and the
CNFDD delta-debugger [150, 158].

Accordingly, we have implemented a MOCKPROPAGATOR class in MOBICAL to
test the EXTERNALPROPAGATOR API. It fuzzes the IPASIR-UP implementation in
combination with all options and features of the solver. It revealed several corner-cases
which we believe would have been very hard to trigger otherwise.

MOBICAL targets only incremental SAT problems and could not help when incorrect
interpolants showed up in earlier experiments with MINICRAIG and CADICRAIG.
Therefore, we have built an external interpolation fuzzer in Python. It checks interpolants
and an accompanying delta-debugger minimizes problems by deleting command line
options, clauses, and variables.

4.9 Experiments

The performance of CADICAL 2.0 was evaluated in three experiments. We first follow
the non-incremental setup of the main track of the SAT competition, where solvers
are run on benchmark files in DIMACS format. The second experiment focuses on
incremental usage, i.e., following the incremental track of the competition. Finally we
show the effectiveness of CADICAL in the context of interpolation via its Tracer
API. All experiments were conducted on our cluster with Intel Xeon E5-2620 v4 CPUs
running at 2.10 GHz (turbo-mode disabled).

Non-Incremental. The winner SBVA-CADICAL [159] of the main track of the SAT
Competition 2023 combined a novel technique for bounded variable addition [78] with
CADICAL 1.5.3. In their implementation preprocessing was limited to 200 seconds
which yields different preprocessed formulas over multiple runs. Therefore, we ran the
preprocessor of SBVA-CADICAL separately for 200 s, and then gave the same formulas
to CADICAL 1.5.3 and our new version CADICAL 2.0. Running them for 5000 s as in
the competition (ignoring preprocessing time in essence) gave very similar results. We
provide more details in the artifact and in the appendix. This confirms that CADICAL
(also in version 2.0) is state-of-the-art in non-incremental solving.

Incremental. How to assess the incremental performance of a SAT solver is less
established. To present an unbiased evaluation, we follow the principles set out by
the last incremental track of the SAT competition in 2020 [14]: The solvers are evaluated
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in six different applications, each featuring 50 benchmarks, with a 2000s timeout
and 24 GB memory limit. Four applications are carried over directly from the 2020
competition: the CEGAR-based QBF solver IITTHAD, the simple backbone extractor
BONES, the longest simple-path search LSP, and the MaxSAT solver MAX. However,
we exclude two applications: the essential variable extractor and the classical planner
PASAR. Both use features that are not present in all solvers. The former queries
ipasir_learned, which is missing from CADICAL 1.0, and the latter relies on
limiting the number of conflicts. Instead, we include the bounded model checker for
bit-level hardware designs CAMICAL [62] and the sophisticated backbone extractor
CADIBACK [6].

The benchmarks from the incremental track from the 2020 SAT Competition re-
main unchanged. For CAMICAL, we randomly select 50 Boolean circuits used in
HWMCC’17 [160]. Although CADIBACK solves the same problem as BONES, we
opt for a distinct set of benchmarks. In 2020 the “smallest and easiest satisfiable” [14]
CNF formulas were selected and even though backbone extraction is harder than mere
solving, they were rather easy. Conversely, we compile a non-trivial set of benchmarks
by randomly selecting satisfiable formulas from past competitions (2004-2022)[6] that
take KISSAT 3.0.0 [144] more than 20 s to solve. We use KISSAT as it is not incremental
and hence does not compete.

The artifact has a comparison of CRYPTOMINISAT and CADICAL on 1798 for-
mulas [6] and indicates that our selection does not impact the outcome. See Fig. 4.3
in the appendix for further discussion. As detailed in Sect. 4.6, CADIBACK utilizes
constraints, which are only available in recent versions of CADICAL and are simulated
with activation literals otherwise.

Our evaluation includes all solvers that competed in 2020: ABCDSAT i20 [161]
CRYPTOMINISAT 5 (CMS) [162, 163], and RISs 7.1.2 [164] . The CADICAL version
from that year is referred to as CADICAL 2020. The other two versions are 1.0 from
2019 and our latest release 2.0. We also include MINISAT 2.2 and the latest version
of GLUCOSE 4.2.1. Table 4.1 presents for each SAT solver and application: the PAR2
score, which is the average runtime in seconds with a penalty of 4000 for unsolved
instances; and the number of solved instances.

Our results show that CADICAL 2.0 reaches state-of-the-art performance, demon-
strating a distinct improvement over previous versions. Also, differing from the findings
in [165], we see a significant advantage of the newer CADICAL and CRYPTOMINISAT,
over the older MINIS AT, further substantiated below.

Interpolants. To validate CADICRAIG using CADICAL, we converted all 400 bench-
marks of the SAT Competition 2023 into interpolation problems split into A and B
parts chosen with the goal to assign related clauses to the same part in order to keep the
number of global variables limited. The index of the smallest variable of each clause
determines the probability of the clause being assigned to A. On our crafted benchmarks
(5000 s timeout, 7 GB), CADICRAIG significantly outperforms MINICRAIG, solving
117 benchmarks, compared to only 75.

26



‘ CaDiBack CaMiCaL Bones LSP Max  Ijtihad Total

2 20 3297 260615 494145 189827 1976126 298013 2209140
E 2020 3409 26771z 6223 195526 201525 2986u3 227733
S 1.0 34951 2627us 595us 201126 202825 2989u3 229133
CMS 3491 27017 397us 177320 202125 30572 2240u37
MINISAT 3678 280716 68743 19936 2094124 312311 2397125
RISs 36651 283615 8920 18358 201725 3140m 239825
ABCDSAT 3582n 296613 535us 249321 203726 320710 2470123
GLUCOSE 37784 29813 94840 20785 211724 320610 251816
VBS | 3127w 2546m | 257w 17652 1856z 2896w | 2075us

Table 4.1: Performance comparison of six incremental solvers, with three versions of
CADICAL (2000 s timeout). For each solver, we report PAR2 score over 50 benchmarks
per application and number of solved instances (“PAR2issoved”’). The four applications
to the right have been used in the incremental track of the 2020 SAT competition. The
best results per application are marked in bold. The last row presents the hypothetical
Virtual Best Solver which always picks the best performing backend for each instance.

4.10 Conclusion

In this very first conference paper on CADICAL we reviewed its most important com-
ponents and features as well as its testing and debugging infrastructure. We highlighted
its use as SAT engine in SMT solving via the user propagator interface and how the
tracer API can be used to compute interpolants. Our experiments show that CADICAL
remains efficient despite this flexibility.

Producing incremental proofs is ongoing work [142, 143]. Further future work
consists of producing incremental proofs for all features supported by CADICAL,
avoiding to freeze observed variables by the user propagator, and porting into the main
branch features provided by other users.

4.11 Appendix

4.11.1 Availability and Release Plan

We used version CADICAL 2.0.0-rc.5 (tagged with rel-2.0.0-rc.5) in our ex-
periments. It is available on the development branch of CADICAL on GitHub at
https://github.com/arminbiere/cadical with commit hash a3ebcea).

For the artifact and final release 2.0 we will further improve our latest additions for

incremental proofs [142] and particularly also work on performance optimization for
the SAT competition 2024.
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4.11.2 Incremental Lazy Backtracking (ILB)

ILB and reimply are features proposed by INTELSAT [77]. The main idea of ILB is to
keep as many assignments as possible on the trail between incremental solve calls while
also working with assumptions. Nadel [77] claims that his novel reimply procedure
increases the potency of ILB.

We implemented both ILB and reimply in CADICAL. However, in our experiments
we see little variance between enabling and disabling any of the two features (Table 4.2).
As reimply adds increased code complexity substantially we removed it again for version
2.0. We are still convinced, that ILB can be helpful for MaxSAT and similar applications
and thus keep it.

ILB Reimply | CaMiCaL CaDiBack | Bones LSP  Max Ijtihad | Total

20 V X 25489 33180 4774s 189707 197026 297913 2198140
X X 25489 33280 476us 18987 197026 2986113 2201140
1.9 Vv X 254219 3268 466us 189827 197526  2981us 218941
X X 254319 3270m 467us 189827 197726 29883 2190u41
v v 255819 333510 493us 189727 1976106 299513 220940
X v 256019 3379 492us 18967 198026 29993 221830

Table 4.2: Investigation of Incremental Lazy Backtracking (ILB) and reimply features
of CADICAL. Reimply has been removed from the code base in version 2.0. However,
ILB is enabled by default in version 2.0 and therefore matches the entry in Table 4.1.

4.11.3 Details on the CADIBACK Evaluation

In the original CADIBACK paper [6] it was evaluated on a large number of benchmarks,
actually 1798 satisfiable SAT formulas collected from the SAT competitions between
2004 and 2020. We evaluated the two best solvers on the same set. As can been seen
in Fig. 4.3 CADICAL outperforms CRYPTOMINISAT on this large set of benchmarks,
suggesting that the selected subset presented in Table 4.1 is representative.

4.11.4 Testing and Debugging

To activate logging, the program needs to be configured with the command . /configure
-1 before being compiled (with make). Note that logging still needs to be enabled at
run time (with —1) and can then produce a substantial amount of output. An excerpt of
debugging output for the “Tie & Shirt” example in the next section is shown in Fig. 4.7.

To produce verbose inprocessor scheduling information, CADICAL must be executed
with —v -v -v. Here is an example of verbose output:

stabilizing-1] reached stabilization limit 3001 after 3001 conflicts
stabilizing-1] new stabilization limit 7001 at conflicts interval 4000
collect-3] moving 93088600 bytes of 2635278 non garbage clauses
collect-3] collected 96 bytes 0% of 2 garbage clauses

Q0 QQ
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Figure 4.3: Number of benchmarks solved over time by CADIBACK with CADICAL
2.0 and CRYPTOMINISAT as backend SAT solvers. The benchmark set contains 1798
formulas.

compact-1] reducing internal variables from 1162410 to 819493

C 8.78 650 961 2 125 3001 2878 39% 2 2632400 819492 70%
[
[rephase-2] reached rephase limit 3001 after 3002 conflicts

C
C
C

In Fig. 4.4 we provide and example of running MOBICAL. It runs and minimizes
each API call trace. A minimized trace can be executed with MOBICAL from within a
symbolic debugger such as gdb to obtain more information about the failure. In this
example we implanted an explicit COVER (true) coverage goal in the code, which
work in the same way as assertions, and even in production code (with all other assertions
disabled) triggers an SIGABRT signal when the condition is triggered. This is useful
during development to produce call traces that reach a certain part of the code or making
sure that a specific condition is not reachable which might help to reduce and simplify
code size.

4.11.5 Tie & Shirt Demo

This example has been used by the first author in various talks as introduction on how
to use SAT solvers. The following DIMACS file has three clauses, each encoding a
constrain in the context of satisfying some dress code rules. The first clause encodes
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# ./build/mobical

[...]

m count seed/buggy/reducing/reduced calls vars clauses
M —
m 5 bug-10705263437599747538 .trace 1247 54 190 3
m 5 red-10705263437599747538.trace 44 11 11 1
~C

$ gdb —--args ./build/mobical red-10705263437599747538.trace
[...]

cadical: shrink block:319: ../src/shrink.cpp: Coverage goal ‘true’ reached.

Figure 4.4: Here MOBICAL was launched to check if some condition can be triggered
(by adding a COVER (true) ). It found one bug with seed 10705263437599747538
and minimized it to the file red-10705263437599747538 . trace that we replay
in gdb.

that wearing a tie (encoded as integer 1) requires to wear a shirt too (encoded as integer
2). The second one makes sure that least a tie or shirt is worn and finally the last clause
says, that wearing a tie and a shirt is overkill.

p cnf 2 3
-1 20

1 20
-1 -2 0

These rules are satisfiable and we can use CADICAL to determine a satisfying
assignment which is shown in Fig. 4.6. The produced model shows that wearing a shirt
but no tie satisfies the constraint. The same problem can further be solved through the
API as explained in Fig. 4.5, actually in a more elaborated way.

4.11.6 CDCL Loop and Inprocessing

It was mentioned in Sect. 4.2 that the whole CDCL search and inprocessing in CADICAL
is controlled by the cdcl_loop_with_inprocessing function. Fig. 4.8 shows
most and actually literally the steps of this function (the logging and debugging specific
parts are omitted).

When solve () is called, CADICAL first applies preprocessing (including lo-
cal search and lucky phases), and, in case it does not find any solution, the func-
tion cdcl_loop_with_inprocessing is called. The function sums up what is
checked and in which order during search and inprocessing in CADICAL. Note that
here vivification is called as part of forward subsumption (subsume () ).
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enum { TIE = 1, SHIRT = 2 };
solver->add (-TIE),
solver->add (TIE),

solver->add (-TIE),

int res = solver->solve ();
assert (res == 10);

res = solver->val (TIE);
assert (res < 0);

res = solver->val (SHIRT);
assert (res > 0);

// Incrementally solve again
solver—->assume (TIE);

res = solver->solve ();
assert (res == 20);

res = solver—->failed (TIE);

assert (res);

assert (l!res);

solver—>assume (—SHIRT);

res = solver->solve ();
assert (res == 20);

res = solver->failed (TIE);

assert (!res);

assert (res);

delete solver;

solver->add
solver->add (SHIRT),
solver->add (-SHIRT),

res = solver->failed(-SHIRT);

CaDiCaL::Solver % solver = new CaDiCal::Solver;

// Encode Problem and check without assumptions.

(SHIRT), solver->add (0);

solver->add (0);
solver—->add (0);

// Solve instance.
// Check it is ’SATISFIABLE’.

// Obtain assignment of ’'TIE’.
// Check 'TIE’ is ’‘false’.

// Obtain assignment of ’SHIRT’.
// Check ’SHIRT’ is ’true’.

under one assumption.
// Now force ’TIE’ to true.

// Solve again incrementally.
// Check it is ’UNSATISFIABLE’.

// Check ’TIE’ responsible.
// Yes, ’'TIE’ in core.

res = solver->failed (SHIRT);// Check ’SHIRT’ responsible.

/SHIRT’ not in core.

// No,

// Incrementally solve once more under another assumption.

// Now force ’SHIRT’ to false.

// Solve again incrementally.
// Check it is ’'UNSATISFIABLE’.

// Check ’TIE’ responsible.
// No, ’TIE’ not in core.

// Check ’!SHIRT’ responsible.
// Yes, ’!SHIRT’ in core.

Figure 4.5:

Tie &

Shirt  example of APl  usage

“cadical/test/api/example.cpp”’).

(from
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noooo0o0co0000Q00QCOQCOQCO0CO0CO0000000000000000000000<CDDO0O0O00O000000000000000000000000000000aO0

——— [ banner ]

CaDiCaL SAT Solver
Copyright (c) 2016-2023 A. Biere, M. Fleury, N. Froleyks, K. Fazekas, F. Pollitt

Version 2.0.0-rc.5 a3ebcea9903f7b71d28fb5133d81d5592b05089%a
g++ (Ubuntu 11.4.0-lubuntul~22.04) 11.4.0 -Wall -Wextra -03 -DNDEBUG
Fri Jan 26 11:02:24 CET 2024 Linux ktplds 6.5.0-1l4-generic x86_64

-—— [ parsing input ] ———-—————————————— o

reading DIMACS file from ’‘tie.cnf’

opening file to read ’tie.cnf’

found 'p cnf 2 3’ header

parsed 3 clauses in 0.00 seconds process time

—--— [ options

all options are set to their default value

--— [ solving
time measured in process time since initialization

seconds reductions redundant irredundant

MB restarts trail variables
level conflicts glue remaining
« 0.00 4 00 0 0 0 0% 0 3 2 100%
1 0.00 4 00 0 0 0 0% 0 3 2 100%
1 0.00 4 00 0 0 0 0% 0 3 2 100%

—-—— [ result ]

SATISFIABLE
-120

—--— [ run-time profiling

process time taken by individual solving procedures
(percentage relative to process time for solving)

.00 28.65% parse
.00 26.56% search
.00 25.52% lucky
.00 0.00% simplify

oo oo

0.00 42.11% solve

last line shows process time for solving
(percentage relative to total process time)

——— [ statistics

lucky: 1 100.00 % of tried

minimized: 0 0.00 % learned literals
shrunken: 0 0.00 % learned literals
minishrunken: 0 0.00 % learned literals
propagations: 0 0.00 M per second

trail reuses: 0 0.00 % of incremental calls

seconds are measured in process time for solving

-—— [ resources ] —---—mmmo oo
total process time since initialization: 0.00 seconds

total real time since initialization: 0.00 seconds

maximum resident set size of process: 3.62 MB

—-— [ shutting down ]

exit 10
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Figure 4.6: Output of CADICAL run on the Tie & Shirt example.




LOG 0 set option ’'set ("log", 1)’ from ’0’
LOG 0 API call ’'set ("log", 1)’ succeeded
LOG 0 API call ’'set ("--log")’ succeeded

LOG 0 API call ’'set ("tieandshirt.cnf")’ started
LOG 0 API call 'set ("tieandshirt.cnf")’ failed
banner

CaDiCaL SAT Solver
Copyright (c) 2016-2023 A. Biere, M. Fleury, N. Froleyks, K. Fazekas, F. Pollitt

Version 2.0.0-rc.5 a3ebcea9903f7b71d28fb5133d81d5592b05089%a

g++ (Ubuntu 11.4.0-lubuntul~22.04) 11.4.0 -Wall -Wextra -g -DLOGGING
Sat Jan 27 08:01:38 CET 2024 Linux abryzen9 6.5.0-1l4-generic x86_64
will not generate nor write DRAT proof

—-—— [ parsing input ] ———————————————— o

reading DIMACS file from ’tieandshirt.cnf

LOG 0 API call 'read_dimacs ("tieandshirt.cnf")’ started
opening file to read ’'tieandshirt.cnf
found "p cnf 2 3’ header

aonooooo0o00o000O00Q0O0QO0QCO0QC00CO000O000O000O000O0Q0C00Q000Q00000000000000

LOG 0 API call ’'reserve (2)’ started

LOG 0 API leaves state CONFIGURING

LOG 0 API enters state STEADY

LOG 0 initializing 2 internal variables from 1 to 2

LOG 0 enlarge internal size from 0 to new size 3

LOG 0 initializing VMTF queue from 1 to 2

LOG 0 queue unassigned now 1 bumped 1

LOG 0 queue unassigned now 2 bumped 2

LOG 0 initializing EVSIDS scores from 1 to 2

LOG 0 finished initializing 2 internal variables

LOG 0 enlarge external size from 0 to new size 3

LOG 0 initialized 2 external variables

LOG 0 mapping external 1 to internal 1

LOG 0 mapping external 2 to internal 2

LOG 0 API call 'reserve (2)’ succeeded

LOG 0 reserving 3 ids

LOG 0 API call 'add (-1)’ started

LOG 0 activate 1 previously unused

LOG 0 adding external -1 as internal -1

LOG 0 API enters state ADDING

LOG 0 API call "add (-1)’ succeeded
[ R— R R R R
c LOG 0 API call 'add (2)’ started
c LOG 0 API enters state STEADY
c LOG 0 activate 2 previously unused
c LOG 0 adding external 2 as internal 2
c LOG 0 API enters state ADDING
c LOG 0 API call ’'add (2)’ succeeded
JR— R
c LOG 0 API call ’"add (0)’ started
¢ LOG 0 API enters state STEADY
¢ LOG 0 original clause -1 2
¢ LOG 0 new pointer 0x55f329%eac4b0 irredundant size 2 clause[4] -1 2
¢ LOG 0 marking added irredundant size 2 clause[4] -1 2
c LOG 0 watch -1 blit 2 in irredundant size 2 clause[l] -1 2
c LOG 0 watch 2 blit -1 in irredundant size 2 clause[l] -1 2
c LOG 0 API call 'add (0)’ succeeded

Figure 4.7: Partial output of CADICAL with logging run on the Tie & Shirt example.
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int Internal::cdcl_loop_with_inprocessing () {
int res = 0;

while (!res) {
if (unsat)
res = 20;
else if (unsat_constraint)
res = 20;
else if (!propagate ())
analyze (); // propagate and analyze
else if (iterating)
iterate (); // report learned unit
else if (!external_propagate ()) {
if (unsat) res = 20;
else analyze ();
} else if (satisfied ()) { // found model
if (!external_check_solution ()) {
if (unsat) res = 20;
else analyze ();
} else if (satisfied ())
res = 10; // model accepted by ExternalPropagator
} else if (search_limits_hit ())

break; // decision or conflict limit
else if (terminated_asynchronously ())

break; // externally terminated
else if (restarting ())

restart (); // restart by backtracking
else if (rephasing ())

rephase (); // reset variable phases
else if (reducing ())

reduce (); // collect useless clauses
else if (probing ())

probe (); // failed literal probing
else if (subsuming ())

subsume (); // subsumption algorithm
else if (eliminating ())

elim (); // variable elimination
else if (compacting ())

compact (); // collect variables
else if (conditioning ())

condition (); // globally blocked clauses
else

res = decide (); // next decision

}

return res;

}

Figure 4.8: The main steps of the cdcl_loop_with_inprocessing function in
CADICAL.
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Chapter 5

Single Clause Assumption without
Activation Literals to Speed-up I1C3

Published In 2021 Formal Methods in Computer Aided Design (FMCAD)
Authors Nils Froleyks and Armin Biere

Changes from Published Version After the submission, Alexander Ivrii spotted a
bug in the pseudo-code when comparing it to the implementation in CaDiCaL. This bug
is fixed in Figure 5.2. The figure further includes an optimization implemented after the
publication of this paper. See the caption of Figure 5.2 for more details.

Authors Contributions The author developed the idea for the extension together with
A. Biere. He implemented it in CaDiCaL, including the deferred model reconstruction.
He further modified ABC to use CaDiCaL. He ran and interpreted the presented eval-
uation. A. Biere extended the implementation at a later point to incorporate decision
heuristics in the constraint literal selection.

Acknowledgement This work is supported by the Austrian Science Fund (FWF)
under projects W1255-N23 and S11408-N23 as well as the LIT Al Lab funded by the
State of Upper Austria.

Abstract We extend the well-established assumption-based interface of incremental
SAT solvers to clauses, allowing the addition of a temporary clause that has the same
lifespan as literal assumptions. Our approach is efficient and easy to implement in
modern CDCL-based solvers. Compared to previous approaches, it does not come with
any memory overhead and does not slow down the solver due to disabled activation
literals, thus eliminating the need for algorithms like IC3 to restart the SAT solver. All
clauses learned under literal and clause assumptions are safe to keep and not implicitly
invalidated for containing an activation literal. These changes increase the quality of
learned clauses, resulting in better generalization for IC3. We implement the extension
in the SAT solver CaDiCaL and evaluate it with the IC3 implementation in the model
checker ABC. Our experiments on the benchmarks from a recent hardware model
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checking competition show a speedup for the average SAT call and a reduction in
number of calls per verification instance, resulting in a substantial improvement in
model checking time.

5.1 Introduction

Modern SAT solving is based on Conflict-Driven Clause Learning (CDCL) [128]. Many
applications require solving a sequence of related SAT problems incrementally [68, 100],
making use of inprocessing techniques [61, 62, 105] that make modern SAT solvers so
efficient. Among those applications is the symbolic model checking algorithm IC3. In
contrast to other incremental SAT-based techniques, such as bounded model checking
(BMC) [48, 166] and k-induction [35, 167], IC3 does not rely on unrolling the transition
function. As a result the SAT queries that IC3 poses are significantly smaller and faster
to solve. However, the number of queries that IC3 makes over the course of one model
checking procedure is significantly higher. We illustrate the kind of queries that IC3
makes in the following example.

Figure 5.1: Transition system

Consider the transition system of a three-bit (b2b1bg) counter, encoding integers up to
seven, in Fig. 5.1. Non-deterministically, the counter is incremented, remains unchanged
or is reset to zero after reaching five. Suppose we want to ensure that starting at state
zero, all states with values greater than five are unreachable. A typical query asks
“is state six reachable from any other state?”, expressed as SAT?[T A (—by V —by V
bo) A by A by A —bp), where T encodes the transition system for one step from bab; b
to by bp. It is unsatisfiable, telling us that state six is in fact unreachable. We can
try to generalize this result to a set of states by considering a cube — an assignment
to a subset of variables. The query SAT?[T A (—by V by) A by A —bf] is satisfiable
because state two can be reached from state one and SAT?[T A (—ba V bg) A by A —bp]
is satisfiable due to the transition from state three to state four. However, the query
SAT?T A (—ba V —by) A by A bl is unsatisfiable, allowing us to conclude that all states
in the cube by A by are not reachable from outside the cube. We can use that insight to
strengthen 7" by adding —b/, \V —b] to all future queries. This is in contrast to the clauses
we previously added for only one query.

The popular assumption-based interface pioneered by MiniSat [48, 68] allows the
user to specify a set of literals that are assumed to be true and picked by the solver as
the first decisions. This allows us to add the assumption that a state is within a certain
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cube after the transition (b5 A b)), however we still need to assume an additional clause
encoding that the state is currently not within said cube (—by V —b1). The most common
way to implement clause assumption, is to simulate the desired behavior using activation
literals [48, 58]. Let C be a clause to add temporarily and a, the activation literal, a
free variable, i.e., it does not occur in the formula. By adding C' V a to the formula and
assuming —a, we achieve the same as adding C' to the formula. After a solution is found,
the clause «a is added, effectively removing C' from the formula.

The problem with IC3 specifically, is the large number of queries made over the
course of a single verification procedure. After a few hundred calls the activation literals
clutter up the variable space and slow down the SAT solvers propagation. The common
solution to this problem is to fully restart the SAT solver by replacing it with a fresh
instance periodically, thus also deleting all learned clauses and heuristic scores. How to
schedule these restarts in IC3 specifically, has been the topic of a full journal paper [168].
Using the technique presented in this paper, restarts are not necessary at all. Additionally
learned clauses are safe to keep and will not contain an activation literal, which would
make them useless for future calls.

Other approaches to clause assumption have been explored: Satire [63] supports
pseudo-Boolean and other constraints. It records the dependencies of learned constraints
explicitly, thus allowing the deletion of arbitrary clauses. In the SMT community, an
interface based on pushing and popping on the assertion stack is prevalent [169]. Since
constraints are removed in order, it is possible to mark a point in the data structures that
maintain learned knowledge and remove everything past it, when a pop operation is
executed. The first implementation of IC3 [49] used the SAT solver Zchaff [170]. It
assigns an additional 32-bit integer to each clause. When learning a clause the bits of all
dependencies are combined. The user can delete a group of clauses with a certain bit.
This approach mostly simulates the use of activation literals and comes with a significant
memory overhead.

This paper presents an extension of the prevalent assumption mechanism to addition-
ally allow the assumption of a single clause, called constraint in the following. The
extension can be implemented by a simple modification to the decision mechanism
in a CDCL-based SAT solver. We implemented it in under 100 lines of code in the
state-of-the-art SAT solver CaDiCaL. To evaluate our implementation we modify the
IC3 engine in the model checker ABC to use CaDiCaL and clause assumption. As a
first result, the changes simplify SAT solver usage and eliminate the need for restarts as
well as some book-keeping for activation literals. An empirical evaluation on the 2019
hardware model checking competition [171] benchmark set shows that ABC spends
less time outside of computing SAT queries, the number of queries per verification is
reduced and the average SAT call is faster. Overall using clause assumptions yields a
substantial speedup in verification time.
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5.2 Incremental SAT and I1C3

An incremental SAT solver solves a series of related formulas efficiently. It commu-
nicates with an application integrating it through an interface such as IPASIR [58]. It
is implemented by all solvers participating in the incremental library track of the SAT
Competition since 2015. The popular solver MiniSat along with all of its incremental
descendants implement something very similar. We describe the relevant subset:

* add (1it) Add a literal to the current clause or if it equals 0, add the clause to
the formula.

* assume (1it) Assume the literal to be true for the next solving attempt.

* solve () Return SAT if an assignment exists satisfying the formula and all
assumptions, otherwise UNSAT.

* val (1it) Valid in SAT-case. Return the truth value of a literal in the satisfying
assignment.

e failed(1lit) Valid in UNSAT-case. Return true if the literal was assumed and
used to prove unsatisfiability.

A prominent applications of incremental SAT-solving is the symbolic model checking
algorithm IC3 by Bradley [49]. Given a transition system and a property P, IC3
tries to prove that it is not possible to reach a state that violates the property. It
maintains a sequence of frames Fy, Fy, ... Fy, each frame F; is a formula encoding
an overapproximation of the set of states reachable in at most 7 steps. The frames are
refined by adding additional clauses until one of the frames contains all reachable states
and none violates the property or a counterexample is found. Each frame has its own
SAT solver instance that is initialized with an encoding of the transition function and
updated with the new frame clauses.

The solvers are used almost exclusively to answer queries for predecessors of the form
SAT?T A F; A—s A s'], where T is the transition function and s is a cube. To refine the
frames, a state s in the last frame that violates the property is identified with the query
SAT?[F) A —P]. If no such state exists, a new frame is appended, otherwise IC3 tries
to prove that the state is not actually reachable. The frames are queried for predecessors
until an initial state is reached, thus producing a counterexample, or one of the frames
returns unsat. In the latter case failed can be used to generalize the unreachable state
to a cube, the negation of which is added to the frame. IC3 is guaranteed to eventually
terminate with two consecutive frames containing the same set of states.

5.3 Assuming Clauses

Our main contribution is an extension to incremental SAT solvers that allows the
assumption of an additional clause, called constraint, which is only valid during the next
satisfiability query. Two functions are added to the interface:
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e constrain (1it) Adds a literal to constraint. If a finalized constraint exists,
delete it. If the literal equals zero, finalizes the current constraint.

e constraint_failed () Valid in UNSAT case. Return whether constraint
was used to prove unsatisfiability.

Our approach is similar to the idea of model elimination [172]. We modify the decision
heuristic to restrict the search to assignments that satisfy the constraint. The modified
decision procedure is outlined in Fig. 5.2. The function decide is called initially at
decision level 0. Decisions assigned to the trail are propagated outside of the function
to assign truth values. Whenever a conflict arises, the decision level decreases and the
assignments are backtracked [128]. Every assumption has a fixed decision level. In
the case where an assumption is already satisfied, a pseudo decision level is introduced.
Otherwise if an assumed literal is assigned to false at this point, the assignment is
the result of propagating other assumptions together with original or learned clauses.
Therefore the formula is unsatisfiable under the current assumptions if line 4 is reached.

At the first decision level after all assumptions have been assigned, three cases need to
be considered: if one of the literals in the constraint is already satisfied, the search is not
restricted. Otherwise one of the literals is picked as a decision to satisfy the constraint.
In line 13 a variable selection heuristic can be used to pick the most promising literals
first, similarly to [173, 174]. In the case where all literals are assigned to false, they
are implied by the assumptions, thus cannot be assigned differently. The formula is
therefore declared unsatisfiable under the assumptions and the constraint. This might
only happen after additional clauses have been learned.

This approach to handle assumptions was pioneered by MiniSat [68]. It has been
improved upon by collectively propagating the assumptions, using trail saving between
incremental calls [175] or factoring out assumptions [176]. These techniques can be
combined with the presented constraint mechanism.

Modern SAT solvers not only report unsatisfiability as a result, but also allow the user
to query whether a particular assumption failed, i.e., was used to prove unsatisfiability.
This concept, introduced as analyzeFinal by MiniSat [68], is essential for the
efficiency of many applications. If an original or learned clause is inconsistent with the
assumptions, the last assumption picked as a decision is already assigned to false. Using
a simple breadth-first search, the reasons for this assignment can be traced back through
the implication graph [128]. The assumptions at the leaves of the search tree are marked
as failed. In line 16, a similar search is initialized with the negation of every literal in
the constraint. Thus, all assumptions necessary to prove unsatisfiability of the constraint
in conjunction with the formula are marked as failed.

5.4 Experiments
We implemented the constraint interface in CaDiCaL [70] version 1.3.1. To increase

confidence in the correctness of the SAT solver and its new extension, we used the model-
based tester [150] that is integrated with CaDiCaL. It generates random sequences of
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decide ()

1 if level < lassumptionsl

2 £ <+ assumptions[level]
3 if val(f) = false
4 analyzeFinal()
5 else ifval(f)=true
6 level++ // pseudo decision level
7 else trail[level++] < ¢
8 else if level =lassumptions|
9 unassignedLit <— 0
10 for £ in constraint
11 if val(f) = false continue
12 if val(f) =true
13 constraint.move_to_front(¢) // sorts over time
14 level++ // pseudo decision level
15 return
16 assert val(f) =unassigned
17 if unassignedLit = 0 or better_decision(¥¢, unassignedLit)
18 unassignedLit < ¢
19 if unassignedLit=0
20 analyzeFinalConstraint() // cannot be satisfied
21 else trail[level++] < unassignedLit
22 else
23 ¢ < literalSelectionHeuristic()
24 trail[level++] < ¢

Figure 5.2: Algorithm decide picks the next decision to propagate.

Note that this version is modified from the one presented in the original paper:

1) Line 15 was missing. Thanks to Alexander Ivrii for spotting that.

2) In the version presented in the paper we did not use decision heuristics, i.e.,
better_decision always returned true.

3) We did not include the optimization in line 13.

API calls including assumptions and constraints together with random configurations for
the solver. The returned models and failed assumption sets are checked for correctness.
We ran the tester on 8 cores for multiple days to validate 1.2 billion test runs.

To evaluate our approach, we integrated CaDiCaL into the bit-level model checker
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ABC! [177], replacing the integrated version of MiniSat [68]. There are two places
where activation literals are used in ABC. The first is an alternative implementation of
cube generalization, that is not used in the default configuration. In fact, it seems to not
work correctly in the default version of ABC!. The other usage of activation literals is
in the function that implements the predecessor query SAT?[T' A F; A —s A §']. The
transition function 7" and the frame F; will only be extended with additional clauses,
the cube s however changes at each query. The next-step cube s is in conjunction
with the rest of the formula and therefore translates to a set of unit clauses that can
be implemented with assumptions. To combat the slowdown due to unused activation
literals cluttering up the variable space, ABC replaces the SAT solver with a new instance
after adding 300 activation literals. Using the extended interface, the negated cube —s
can be added as a constraint, thus eliminating the restarts.

We tested five configurations: the original version of ABC (Og), disabled SAT solver
restarts (Di), a version with CaDiCaL as backend using activation literals (Ca) and
one also using CaDiCaL but the new constraint interface instead of activation literals
(Co). As an additional result we present a slight modification to the last configuration
that defers model reconstruction [62] in the SAT-case and failed literal collection in
the UNSAT-case until a model or a failed literal is queried respectively (De). Using a
heuristic to pick the literals from the constraint has not been successful. ABC uses a
priority metric to order the literals of the cube s by default. Using this order for the
constraint turned out to be superior to the heuristics available in CaDiCaL.

Our evaluation follows the principles laid out in SAT manifesto v1.0. [178]. The
source code used for the evaluation and the generated log files are available on our
website?. The experiments are run in parallel on 32 nodes of our cluster. Each node has
access to two 8-core Intel Xeon E5-2620 v4 CPUs running at 2.10 GHz (turbo-mode
disabled) and 128 GB main memory. We allocate 4 instances of ABC to every node.
The time limit is set to 1 hour of wall-clock time, memory is limited to 30GB per
instance. The memory limit is the only aspect that differs from the setup used in the
hardware model checking competition. However, the maximum memory consumption
was observed to be below 1.5GB.

The evaluation is based on the benchmark set used in the 2019 model checking
competition [171]. It contains 219 instances, 15 of which we removed because they
were not solved by any tested configuration. We use PAR-2 scoring to compare the
configurations. PAR-2 assigns the runtime in seconds or twice the time limit (7200)
if an instance was not solved. The other columns list additional measurements for
the two configurations using CaDiCaL, one with activation literals (Ca) and the other
using constraints instead (Co). The number of restarts is zero if constraints are used
and therefore not shown. Besides that, we list the number of SAT calls (in thousands),
along with the average time per call in milliseconds. We display the measured data for
instances, where at least one configuration took more than two seconds, along with an
average over all 204 instances. The results are presented in Table 5.1.

' commit f87c8b4
*http://fmv.jku.at/assumingclauses

41


https://github.com/berkeley-abc/abc/commit/f87c8b434a3024972c6bc85c072d80adbed3e778
http://fmv.jku.at/assumingclauses

Table 5.1: Experimental results.

PAR-2 Res. Calls TpC

Di Og Ca Co De Ca Ca Co Ca Co
Mean 80 46 16 893 8.21 61 19 15 0.61 0.51
beemTele6Int 136 7200 53 181 101 520 157 574 024 0.27
toyLock4 7200 483 1731 357 359 7459 2251 1098 042 0.25
visArraysField5 7200 1.6 058 51 34 1 1 113 053 041
nan 208 421 163 158 140 1381 420 423 029 0.32
beemColl6Int 241 258 322 133 108 398 123 91 231 1.24
calll0 213 168 130 110 122 191 59 42 196 2.39
call09 179 197 102 117 86 110 34 44 271 244
cal93 186 136 121 118 140 206 63 58 1.69 1.8
cal94 127 160 115 95 131 171 52 41 194 21
cal100 112 42 67 67 54 148 45 4 123 129
call31 46 44 77 58 60 136 42 35 158 141
call46 47 39 71 42 38 131 41 23 151 155
call36 34 46 59 43 35 100 31 23 1.62 159
call28 52 38 46 37 40 99 31 25 1.29 1.27
beemExit5Int 51 17 26 16 15 357 110 8 0.18 0.15
call34 38 47 50 48 36 79 25 26 1.72 1.57
call32 39 36 48 42 32 83 26 24 157 1.54
call44 30 34 41 33 42 64 20 17 1.7 1.64
beemLampNat5Int 26 23 23 35 31 193 61 102 028 03
cal89 16 14 32 33 25 68 22 18 123 1.6
beemRether4Bstep 13 4.29 16 7.16 6.99 91 29 13 042 049
beemBrp2Int 16 5.1 3.6 076 0.74 86 29 7 0.08 0.07
beemFrogs2Bstep  2.47 2.53 12 559 474 31 10 4 112 127
beemAddingSInt 1.78 39 207 1.12 1.09 53 17 11 0.08 0.07
visArraysTwo 135 289 3.89 057 055 99 30 5 0.09 0.07
Heap 2.02 1.9 338 1.68 1.63 57 22 13  0.11 0.09

Disable restarts, Original version of ABC, CaDiCaL backend, Constraint interface
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Comparing the first two columns, it is evident that if activation literals are used, solver
restarts are necessary. It has been suggested [168] that because the queries posed by
IC3 are small but numerous, IC3 implementations should prefer faster SAT solvers to
more powerful ones. Comparing the original with the CaDiCaL version shows that
while using MiniSat is faster on a number of instances, using CaDiCaL seems to be an
advantage on the harder instances. In fact, using the newer SAT solver, one additional
instance can be verified. Over all instances a speedup of 2.82 is observed.

With the version using CaDiCaL and activation literals as a baseline, we observe a
speedup of 1.84 when switching to constraints. The time spend outside the SAT solver
is reduced to below 20%, by eliminating the actual SAT solver restarts and the repeated
loading of the transition relation [179]. Beyond that, the average SAT call is 16% faster.
This can partially be explained by the solver not being slowed down by activation literals.
We conjecture that, more importantly, the “quality” of the learned clauses in the solvers
database is higher. Since clauses are not deleted by restarts and none of the learned
clauses are implicitly disabled for containing an activation literal, the solver can profit
from shorter and more useful clauses. Measuring this quality however, is outside the
scope of this paper. An additional effect is that these clauses allow conflicts earlier in
the search tree, resulting in fewer failed literals and thus allows for better generalization
in IC3. This can explain why 21% fewer calls are made.

The last two columns listing PAR-2 scores reflect small changes in the solver. De-
ferring the model reconstruction results in an additional speedup of 9%, increasing the
total speedup compared to the original version to 5.64.

5.5 Conclusion

We present a simple extension to the commonly used incremental SAT solver interface
IPASIR that simplifies solver usage and is easy to implement by modern SAT solvers.
The extension gives an alternative to the techniques described in the journal paper [168]
and partially implemented in ABC. Our experiments using the new technique with ABC
show a substantial improvement in model checking time. Compared to the original IC3
engine, our final implementation is more than five times faster.

Since the development of new SAT encodings depends on the interface available, we
hope that new applications will arise as more solvers implement the extended interface
presented in this paper.

Handling more than one constraint can be achieved by using a complete model
elimination search over the constraints. This would however increase the implementation
effort. Since inprocessing techniques cannot be applied, model elimination might be
less effective than using activation literals, if the number of temporary clauses is high.
We leave this investigation to future work.
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Chapter 6

CadiBack: Extracting Backbones
with CaDiCaL

Published In 26th International Conference on Theory and Applications of Satisfia-
bility Testing (SAT 2023)

Authors Armin Biere, Nils Froleyks, and Wenxi Wang

Changes from Published Version Added additional plots to the Appendix (6.2, 6.3,
and the 2020 and 2021 plots in Figure 6.5). Changed layout of the pseudo-code.

Authors Contributions

The pseudo-code presented in this paper was written by the author. The additional
ideas, particularly those related to the use of constraints—crucial for performance—
emerged from discussions with A. Biere. A. Biere implemented the initial version of
CadiBack used in this paper. The evaluation was carried out jointly.

Abstract The backbone of a satisfiable formula is the set of literals that are true in all
its satisfying assignments. Backbone computation can improve a wide range of SAT-
based applications, such as verification, fault localization and product configuration. In
this tool paper, we introduce a new backbone extraction tool called CADIBACK. It takes
advantage of unique features available in our state-of-the-art SAT solver CADICAL
including transparent inprocessing and single clause assumptions, which have not been
evaluated in this context before. In addition, CADICAL is enhanced with an improved
algorithm to support model rotation by utilizing watched literal data structures. In our
comprehensive experiments with a large number of benchmarks, CADIBACK solves
60% more instances than the state-of-the-art backbone extraction tool MINIBONES. Our
tool is thoroughly tested with fuzzing, internal correctness checking and cross-checking
on a large benchmark set. It is publicly available as open source, well documented and
easy to extend.
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6.1 Introduction

In 1997, Parkes first defined the backbone of a propositional formula as the set of
literals whose assignments are true in every satisfying assignment [180]. The size
of the backbone is associated with the hardness of the corresponding propositional
problem [181, 182]. Usually, the larger a backbone, the more tightly constrained the
problem becomes, thus the harder for the solver to find a satisfying assignment [183,
184]. It is proved by Janota that deciding if a literal is in the backbone of a formula
is co-NP complete [185]. Furthermore, Kilby et al. show that even approximating the
backbone is intractable in general [186].

Nevertheless, the identification of the backbone (either in a partial or a complete
way) has a number of practical applications, such as post-silicon fault localization in
integrated circuits [187-189], interactive product configuration [185], facilitating the
solving efficiency of MaxSAT [190-193] and random 3-SAT problems [194], as well
as improving the performance of chip verification [195]. Motivated by the wide range
of applications, developing efficient algorithms for computing the backbone of a given
propositional formula is important.

Indeed, numerous techniques to compute the backbone have been proposed during
the past few decades. These approaches make use of four main techniques: (7) model
enumeration, which enumerates all models of a satisfiable formula to identify the
backbone; (i7) iterative SAT testing, which repeatedly filters out a candidate or include
it in the backbone; (2i7) upper bound checks, which try to identify multiple backbone
literals at once; and (iv) the core-based method, which is guided by unsatisfiable cores
and tries to eliminate as many candidates at once as possible. For example, Kaiser et
al. [196] designed three model-enumeration algorithms. Climer et al. [197] propose a
graph-based iterative SAT testing approach.

Later, Zhu et al. [187, 188] designed more efficient SAT testing approaches for post-
silicon fault localization. Note that, the backbone extractor MINIBONES [145, 198]
implements both an iterative and a core-based approach. Despite recent attempts [199—
201] to improve upon MINIBONES, the corresponding tools are not publicly available,
and no significant advances have been made so far which still leaves MINIBONES as the
state-of-the-art.

Our new backbone extractor CADIBACK improves the iterative algorithms of MINI-
BONES [145, 198] and uses the state-of-the-art SAT solver CADICAL [73], extended
with new flipping algorithms to support backbone extraction. Different configurations
of these algorithms are implemented inside CADIBACK, empirically evaluated and
compared with MINIBONES on a large set of satisfiable instances collected from the
SAT Competitions from 2004-2022, on which CADIBACK solves 60% more instances.

The paper is structured as follows. After this introduction, we discuss basic concepts
and notations related to backbone extraction in Section 6.2. The relevant backbone
extraction algorithms of MINIBONES are introduced in Section 6.3. We then present our
improvements over these algorithms and propose CADIBACK in Section 6.4. The imple-
mentation details of CADIBACK are provided in Section 6.5. Finally, we empirically
evaluate CADIBACK in Section 6.6 and draw conclusions in Section 6.7.
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6.2 Basic Concepts and Notations

Consider a propositional formula ¢ in conjunctive normal form (CNF) over a fixed set
of variables V and literals £ = V UV, where V = {0 | v € V} denotes the negated
variables. For a literal £ € £, we define v = |/| as the variable of £, i.e., ¢ € {v,v}. In
this paper, we mainly consider full assignments o: V — {0, 1} assigning variables to
Boolean constants “0” (false) or “1” (true). For convenience, we use the set and logic
notation interchangeably for formulas ¢, clauses C' € ¢ and literals £ € C, as well as
assignments {¢ | o(¢) = 1}. The notion of assignments is lifted to literals, formulas
and clauses in the natural way through substitution followed by Boolean expression
simplification. A model of ¢ is an assignment o with o(p) = 1 and also called satisfying
assignment. A formula is satisfiable if it has a model. Otherwise, it is unsatisfiable. In
this paper, we focus on satisfiable formulas (.

A literal £ is a backbone literal of a formula o iff there exists a model o of ¢ with
o(¢) = 1 and all other assignments o’ with ¢’(¢) = 0 do not satisfy ¢, i.e., o’(p) = 0.
The backbone B of a formula ¢ is the set of its backbone literals. We introduce two
conditions that determine whether literals are included or not in the backbone 5.

The first condition is based on identifying fixed literals. A clause C' = ¢ (or C' = {/}
in set notation) having a single literal ¢ is called unit clause. If a unit clause C € ¢, the
corresponding literal ¢ is clearly a backbone literal. We call such literals fixed. This
also applies to unit clauses deduced by the SAT solver through for instance clause
learning, simplification and preprocessing [60]. All such fixed literals are included in
the backbone B.

The second condition is called disagreement condition, stating that if there are two
models o and ¢’ disagreeing on £, i.e., o’ (¢) = o (¢), then neither £ nor its negation are
backbone literals (i.e., £,/ ¢ B). This can be realized by using each newly discovered
model ¢ to filter the list of remaining backbone candidates. For instance, the empty
formula over n variables has both constant assignments o = 0 and ¢’ = 1 as models,
disagreeing on all literals, and thus B = (). Note that, there is a special case of the
disagreement condition called model rotation, as described in [145]. Similar ideas have
been used for MUS extraction [146]. The literal ¢ is rotatable [145] in a model o of
¢ iff 0(¢) = 1 and the assignment 7 that differs from o only in || is a model of ¢ (7
can be taken as the special case of ¢’ in the disagreement condition). We also call such
literals flippable, which applies for the rest of the paper.

Obviously, a literal which can be flipped is not a backbone literal, nor is its negation,
and both can be dropped from the backbone candidate list. Example 6.1 below shows
how a literal is determined to be flippable under the model rotation condition.

Example 6.1. Consider ¢ = (¢ V t) A (¢ V e) A ¢’ which encodes “if-then-else(c, ¢,
e)”, where neither ¢ nor ¢ occur in ¢’ but e and ¢ do (they are not “pure”). Assume that
the constant true assignment o = 1 is a model, i.e., 0(¢’) = 1. Both ¢ and e are set to
true, but only the literal ¢ can be flipped. In the resulting model 7, all variables are set to
true except for ¢, and ¢ can be flipped (back) in 7 to obtain the original model o. Thus,
literal c is flippable.
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6.3 Algorithms in MINIBONES

The backbone extraction algorithms of MINIBONES [145] take advantage of incremental
SAT solving (refer to [5, 62, 68] for details) to gradually augment the original formula
with implied clauses (particularly learned clauses). These clauses are added implicitly to
the single SAT solver instance during incremental queries, while assuming the negation
of one or more remaining backbone candidate literals. Specifically, these iterative
MINIBONES algorithms (Algorithms 3, 4 and 5 in [145]) utilize discovered models
and model rotation to refine the set of candidate literals A C £ which is initialized as
A = {¢| o(f) = 1} by the first discovered model . On termination (A = (), the
backbone B matches the fixed literals (of the augmented formula) and all other literals
are dropped.

There are three iterative algorithms proposed for MINIBONES in [145]. The basic
algorithm (Algorithm 3 in [145]) needs at least as many iterations as the number of
backbone literals, which is inefficient on formulas with exactly one solution but many
variables. An improved algorithm (Algorithm 4 in [145]) assumes that at least one of
the remaining candidate literals can be flipped (i.e., using activation literals a temporary
clause is added that contains the disjunction of the negated candidates). If the SAT
query under such assumption is unsatisfiable, all candidates are fixed and the backbone
extraction is done. A more advanced algorithm (Algorithm 5 in [145]) only adds a
subset of the remaining candidates, called a chunk, to the temporary clause. Chunks are
limited in size to avoid thrashing the SAT solver with too large temporary clauses and
make it more likely for a call to be unsatisfiable.

Furthermore, MINIBONES proposes a new model rotation algorithm (Section 5 in [145])
to determine flippable (rotatable) literals based on the notion of forcing. A clause C
forces aliteral £ € C under assignment o, if 0(C) = o(¢) = 1 and 7(C) = 0 with 7
obtained from o by flipping ¢. A literal ¢ is forced in a formula ¢ under a model o, if
there is a clause C' € ¢ which forces £ under o. It is straightforward to see that literals
which can be flipped in a model o of ¢ are exactly those that are not forced. Based on
this observation, the model rotation algorithm goes over all clauses whenever a new
model is found and identifies literals that are not forced by any of them. If any of the
remaining backbone candidates are not forced, they are dropped from the candidate list.
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6.4 Improved Algorithms in CADIBACK

Algorithm 1 Extracting backbone of formula ¢.

/I Assume ¢ is satisfiable and use

/l K =1 for one-by-one,

/I K = 10 for chunking and

/I K = oo as default (non-chunking).
backbone (CNF ¢, chunk rate K = o)

1 (res,o) < SAT(p)

assert o(p) =res=1 Il ¢ satisfiable!

2

3 A« {¢eo|flippable(¢,0)}  //candidates
4 k<1, B+

5 while A # () do

/I F «+ () for no-fixed, otherwise by default
6 F « {¢ € A| ¢is fixed by SAT in ¢}

7 B« BUF, A+ A\F

8 T + pick &’ literals from A // chunk
with k' = min(k, |A])

9 p < Vier ¢ // constraint: flip one in chunk

// Solve ¢ under p with “bool constrain”
// or use activation literal for no-constrain.

10 (res,0) < SAT(¢ | p)

11 if res then /] SAT call satisfiable
// filter only a single literal for no-filter
12 A—{leA|o(0)}
13 A« {l € A | —flippable(¢,o)}
14 k+1 // reset chunk size to 1
15 else /I SAT call unsatisfiable
16 B+ BUT
17 A~ A\T
18 k< K-k /I increase size geometrically
19 return B // or print when literal is added
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Algorithm 2 Checking if literal ¢
can be flipped in model o.

/l Assume o () = o(¢) = 1, unit clauses
// have exactly one watched literal

/ and all other clauses are watched

// by two literals wy # wy with

/l o(wy) = 1if o(ws) = 0 and vice versa.

flippable (CNF ¢, literal ¢/, model o)
1/ return 0 for no-flip

2 for all clauses C watched by ¢ in ¢
3 if o(C\ {¢}) =0then return0
4 returnl

Algorithm 3 Picking the next decision literal under clausal constraint p and
the partial model o.

/I Given a single clausal constraint

/I p=101 V-V /L and assignment o

/I determine whether p is conflicting.

/I Otherwise pick new decision.

decide (constraint p, partial model o)
1 .../l handle literal assumptions
2 ifo(p) =1then /[constraint true
3 ¢ + “first” literal in p with o (¢)

/I speed-up future search for /

4 move /£ to the front of p
5 elif o(p) =0then /l constraint false
6 .../ handle conflicting constraint
7 else /[ constraint undetermined
8 ¢ < highest scored literal in o(p)
9 pick ¢ as new decision and return
10 ... // fall back to default decisions

Our backbone algorithm combines all three iterative approaches from [145]. It simu-
lates the basic iterative Algorithm 3 in [145] for K = 1 and comes close to the improved
Algorithm 4 in [145] for K > |A| and the most advanced Algorithm 5 in [145] for other
values of K. The difference between our algorithm and the latter two is that we use a
dynamic chunk size that is reset to 1 after a satisfiable call and grows geometrically as
long SAT queries remain unsatisfiable. In any case, it first identifies an initial model
o and initializes the set of candidates A after filtering out flippable literals F. The
remaining candidates are examined in chunks I'. If all of the literals in the chunk are
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backbones, the chunk size is increased. Otherwise, the solver returns a new model o
which is used to filter the candidate list, as it is guaranteed to disagree with the previous
model in at least one of the literals in the current chunk by assuming the constraint p.
After that, another model rotation is performed and the chunk size is reset to 1. Note
that, instead of including explicit insertions of backbones, we can assume that the SAT
solver does the insertion implicitly. Flippable literals are identified by the new flippable
algorithm which only traverses clauses watched by the remaining backbone candidates.
The decide algorithm is an optimized version of the decision procedure in our SAT
solver for more efficiently handling large constraints as they arise in this application,
which picks the literal with the highest variables scores (i.e., EVSIDS scores [202] or
VMTEF stamps [203]).

CADIBACK is built upon the state-of-the-art SAT solver CADICAL [73] which has
been extended with additional algorithms to support backbone extraction. The general
backbone extraction algorithm of CADIBACK is shown in Algorithm 1. It follows the
iterative algorithms of MINIBONES, which uses complements of backbone estimates
(as constraints) and chunking, but with three key improvements.

First, CADIBACK uses transparent incremental inprocessing [62], as CADICAL is
able to effectively and efficiently simplify the formula (e.g., using variable elimination)
during incremental queries completely transparent to the user, while MINIBONES does
not support inprocessing due to the limitation of its base solver MINISAT [68].

Second, to assume the disjunction of the complements, CADIBACK utilizes single
clause assumptions through the “void constrain (int 1it)” APIcall in CAD-
ICAL [5], instead of adding a clause with the complement literals and an activation
literal [68], as in MINIBONES. The reason is that these added clauses and variables
by MINIBONES may risk to clog the SAT solver, and handling constraints explicitly
can have the benefit to give the SAT solver more control on selecting decisions. Since
the assumed clausal constraint contains a high number of literals in this application
(|V] initially), we extended the existing implementation of single clause assumptions
in CADICAL slightly, as shown in Algorithm 3. After each restart the SAT solver is
forced to decide on a literal to satisfy the constraint. CADIBACK chooses the one with
the highest variable score (EVSIDS scores [202] or VMTF stamps [203]) among all
unassigned literals in the constraint.

Third, while in earlier work model rotation only had negative effects on MINI-
BONES [145], we show that CADIBACK benefits from using model rotation to im-
prove efficiency of backbone computation. The key of this improvement is our fast
flipping algorithm implemented in CADICAL, accessible through the new API call
“bool flippable (int 1it)”. Asdescribed in Algorithm 2, it uses watch lists
to find individual “flippable” literals in models through propagation instead of going
over the whole formula to find unit clauses. We also consider a variant of Algorithm 2
which eagerly flips flippable literals as they are found, with the goal to drop even more
backbone candidates through flipping. The following example shows the possibility that
flipping a flippable literal can yield additional flippable literals.
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Example 6.2. Continuing Example 6.1, assume that no clause in ¢’ forces literal ¢ under
o = 1, which is not the case for the first clause (¢ \ t) in ¢, as it forces ¢ under o. Thus,
t cannot be flipped in 0. As ¢ does not occur in ¢, there is no clause forcing ¢ under 7.
In addition, the only other clause (¢ V t) with ¢ is not forcing as it is satisfied by two
literals. Thus, flipping ¢ makes ¢ flippable in 7 (7’ obtained from 7 by flipping ¢ remains
a model of ¢). Therefore, neither ¢ nor ¢ are backbone literals.

To implement this idea we provide a new “bool flip (int 1it)” APIcallin
CADICAL which implements a variant of Algorithm 2, inspired by propagation in SAT
solvers. While for “f1ippable” we only need to check that there is another satisfied
literal in all traversed clauses watched by the literal ¢ requested to be flipped, the “f1ip’
implementation needs to unwatch ¢ in these clauses and watch that other satisfied literal
instead (unless the second watched literal in the clause is also satisfied). If finding
replacements is successful for all clauses watched by ¢ (or the other watched literal is
satisfied), the value of / is flipped. Otherwise, it remains unchanged and “f11ip” fails.
Note that this variant of our flipping algorithm was previously implemented inside the
sub-solver KITTEN of KISSAT to diversify models with the goal of speeding up the
refinement process of SAT sweeping [144].

Algorithm 3 of [145] can be simulated precisely with our algorithm by setting K = 1.
However, Algorithm 5 of [145], which uses a fixed chunk size limit can only be
approximated by setting K = 100, as we change the chunk size k¥ dynamically. Our
adaptive scheme increases k geometrically with rate K as long as SAT queries remain
unsatisfiable (which fixes all backbones in the chunk at once). If the SAT solver finds
a model instead then the chunk size k is reset to one, i.e., the next constraint will only
contain the negation of a single backbone candidate. With K = oo the SAT solver
is either assuming the complement of a single or the disjunction of the negation of
all remaining backbone candidates which is the setting of our algorithm closest to
Algorithm 4 of [145] which does not limit chunk size at all.

i

6.5 Implementation

Our tool CADIBACK uses the extended CADICAL [73] and is implemented in roughly
1200 lines of C++ code (counted after formatting with CLANGFORMAT). The source
code available at https://github.com/arminbiere/cadiback is concise and well-documented.
To check the correctness of algorithms and implementations, an internal backbone
checker is implemented inside CADIBACK. The checker can be enabled through the
command line option “~—check” and is simply a SAT solver instance of CADICAL,
i.e., if checking is enabled, CADIBACK obtains the checker instance as a copy of the
main internal CADICAL solver through the “copy” API call provided by CADICAL.
First, it checks correctness of an identified backbone literal ¢, by confirming that the
input formula ¢ under the assumption —¢ (negation of the backbone) is unsatisfiable.
Second, it checks the correctness of dropping a literal £ from being a backbone candidate
(removed from set A in Algorithm 1), by confirming that the input formula ¢ remains
satisfiable under the assumption —¢. Third, it checks whether the number of backbone
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literals found and the number of dropped literals sum up to the number of variables in
the input formula.

Standard grammar-based black-box fuzz-testing was applied [158] with the backbone
checking enabled on all 42 compatible pairs of options used in our experiments in
Section 6.6. This pairwise combinatorial testing [204] through fuzzing was run for 50
hours in parallel using as many processes as configurations on a dual processor AMD
EPYC 7343 machine (providing in total 64 virtual cores). In addition, sizes of the
backbones of all our benchmarks (see Section 6.6) were sanity checked with the ones
computed by 12 configurations of CADIBACK and two configurations of MINIBONES
considered in our experiments.

In addition, for flipping information extraction, the library of CADICAL is extended
to provide “bool flippable (int)” and “bool flip (int)” as discussed in
the last section. The model based tester MOBICAL is also extended correspondingly for
testing the new functionality. This extended version of CADICAL with improved con-
strain handling and flipping is also available at https://github.com/arminbiere/cadical.

6.6 Experiments

Benchmarks. To evaluate CADIBACK empirically, we collected all benchmarks from
the main track of the SAT competition 2004 to 2022 as our initial benchmark set. We
noticed that benchmarks from one competition year often contain old benchmarks
(sometimes arbitrarily renamed or commented by the competition organizers) from
previous competition years. This caused our initial benchmark set to include several
redundant benchmarks. To remove such duplicates, in a second step, we cleaned up each
individual benchmark by removing comments using a simple DIMACS pretty printer,
followed by identifying identical benchmarks through computing an MDS5 checksum
and removing redundant ones. Then we ran the state-of-the-art SAT solver Kissat
3.0.0 [144] with 5,000 second timeout on the no-duplicate benchmark set and selected
benchmarks solved to be satisfiable. In total this yields 1798 benchmarks available at
https://cca.informatik.uni-freiburg.de/sc04to22sat.zip (6 GB) and [31].

Baseline. We choose the state-of-the-art backbone solver MINIBONES as our baseline
(ported to support newer C++ compilers available at https://github.com/arminbiere/
minibones). As suggested by [145], we use the configuration “-e -c 100 —i” (called
minibones-core-based), which adopts the core-based approach with a fixed chunk size
of 100 and inserts found backbone literals into the input formula explicitly. Additionally,
to evaluate how our algorithm improves upon the Algorithm 5 in [145], we choose
“—u —c 100 —i” (called minibones-iterative) which implements the algorithm and
uses activation literals.

Platform. For benchmark collection we used a machine with an AMD Ryzen Thread-
ripper 3970X 32-Core Processor at 4.5 GHz and 256 GB RAM. All other experiments
were conducted in parallel on a cluster consisting of 32 machines, each with two 8-core
Intel Xeon E5-2620 v4 CPUs running at 2.10 GHz (turbo-mode disabled) and 128 GB
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RAM. Each instance is allocated to one core with a timeout of 5,000 seconds and a
memory limit of 7 GB.

Data Availability. Experimental data including source code and log files are available
on https://cca.informatik.uni-freiburg.de/cadiback.

Overall Results. We run both CADIBACK and the baseline MINIBONES on all bench-
marks in our benchmark set. We consider an instance solved if the tool completes
backbone computation, i.e., classifies all literals as either backbone or non-backbone.
The number of instances solved over time are presented in Figure 6.1. It turns out
that the best performing default configuration (default) of CADIBACK can solve 732
instances in total, which is 274 more (59.82%) than the best performing configuration
of MINIBONES, i.e., the iterative configuration minibones-iterative, which solves only
458 instances. Note that, 11 failing runs of CADIBACK and 61 failing runs of MINI-
BONES hit the memory limit. It is also instructive to observe that over all selected 1798
instances CADIBACK was able to find the first model in 1573 cases, while MINIBONES
did so in only 1152 cases, which clearly shows the advantage of using CADICAL [73]
versus MINISAT [68] in this application. It might be interesting to investigate whether
this improvement transfers to other applications using MINISAT.

In addition, following the SAT manifesto v1.0 [178], we also compare the default
configuration of CADIBACK with the best configuration of MINIBONES on all satisfiable
benchmarks in the main track of SAT competitions from 2020 to 2022. As a result,
CADIBACK/MINIBONES solved 22/9 instances in 2020, 52/17 in 2021 and 41/10 in
2022.

Configurations. We study the impact of different design options in CADIBACK by
evaluating 12 configurations (see Figure 6.1) including an extension implementing the
core-based approach of MINIBONES (Algorithm 7 in [145]). Firstly, we observe that the
effects of using smaller chunks were detrimental in our experiments. In fact, the infinite
chunk size K = oo (default) has been very beneficial which solves 732 instances,
while chunk size K = 10 (chunking) solves only 702 instances and chunk size K = 1
(one-by-one) even only 692.

Secondly, we study the impact of design options related to flipping. The experimental
results indicate that removing flippable literals from the candidate list (no-flip) does not
have a significant overall impact. This result differs from the one given by the authors
of MINIBONES where the model rotation was detrimental. We attribute this to the
efficiency of using watch lists for the flippable check. The really-flip configuration uses
“f1ip” and simply tries to flip literals of the candidate chunk in an arbitrary order. It
performs similar to the default configuration which uses “f1ippable”, but is better
in the aspect that the default only found 30,780,841 flippable literals in total, while
really-flip found 32,488,468. This directly leads to a reduction of the total number of
SAT solver calls, which goes down from 2,070,166 calls in no-flip to 1,478,160 calls in
default and even down to 992,404 calls in really-flip.

Thirdly, to evaluate the impact of CADICAL on CADIBACK in detail, including
its more advanced inprocessing and its most recent “constrain” API to support
single clause assumptions [5]. We observe that disabling the inprocessing in CADICAL
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(no-inprocessing) significantly degrades the performance from solving 732 instances
to 690 instances. Disabling the single clause assumption support from CADICAL in
configuration no-constrain and falling back to activation literals (as MINIBONES does)
degrades the efficiency of CADIBACK even more significantly to solving only 672
instances.

Lastly, we evaluate the impact of our core-based algorithm. The core-based pre-
processing in CADIBACK only solves 672 instances. However, since the core-based
approach falls back to default if the considered literal set becomes empty after removing
failed assumptions (see Algorithm 7 in [145] for details), our cores version is more so-
phisticated than MINIBONES (minibones-core-based), thanks to its advanced features
in default. In contrast, the core-based MINIBONES configuration (minibones-core-
based) is slightly better than its iterative version (minibones-iterative) for shorter run
times, which matches observations of [145] with the lower time limit of 800 seconds.
One can argue, that the reason probably is that the core-based algorithm in MINIBONES
can rely on literal assumptions [68] avoiding the overhead inflicted from adding tempo-
rary clauses and activation literals. However, this slight advantage degrades for long
running instances, as can be seen in Figure 6.1.

6.7 Conclusion

We revisited backbone algorithms and implemented a new open-source backbone ex-
traction tool CADIBACK based on an extended version of the state-of-the-art SAT solver
CADICAL. Our extensive evaluation on a large set of benchmarks shows a substantial
performance improvement by solving 60% more benchmarks than the state-of-the-art
MINIBONES.

55



600
|

PR i v

400
|

o 732 cadiback—-default

A 729 cadiback-no-flip
728 cadiback-no-fixed

% 726 cadiback-set-phase
725 cadiback-really—flip

v 702 cadiback-chunking
692 cadiback-one-by-one
690 cadiback-no-inprocessing

4 672 cadiback—cores

@ 670 cadiback—-no-constrain
612 cadiback-no-filter

# 553 cadiback-plain
458 minibones-iterative

B 450 minibones-core-based

I I I I I I
0 1000 2000 3000 4000 5000

200
|

Figure 6.1: Benchmarks solved (vertical) over time in seconds (horizontal) where
backbone extraction completed within 5,000 seconds by 12 CADIBACK configurations:
default denoting all optimizations enabled except for chunking and cores; no-flip denot-
ing no model rotation; no-fixed representing no checking on candidates for being fixed
explicitly; set-phase denoting picking decisions in SAT solver to falsify backbone can-
didates; really-flip denoting flipping flippable literals eagerly; chunking representing the
fine-grained chunk size control (X = 10); one-by-one denoting single literal chunks
(K = 1); no-inprocessing representing no SAT solver internal inprocessing; cores
denoting core-based preprocessing; N0-constrain meaning only using activation literals
instead of using “constrain” API; no-filter disables filtering backbone candidates by
the disagreement condition; and plain setting K = 1 (as one-by-one) and disabling all
other optimizations. We also considered 2 MINIBONES configurations: iterative imple-
menting Algorithm 5 in [145]; and core-based implementing Algorithm 7 in [145].

Appendix

This appendix provides additional experimental details. Figure 6.2 shows a reduced
version of Figure 6.1 to improve legibility, and Table 6.1 presents further details on the
experiment.

We further present a scatter-plot in Figure 6.3 of our best-performing version of
CADIBACK versus the best-performing version of MINIBONES.

The left plot in Figure 6.4 emphasizes why the most simplistic backbone algorithm,
i.e., assuming the negation of exactly one remaining backbone candidate literal, does
not scale, as it just takes way too many SAT calls.

Furthermore, in a number of applications it can be beneficial to get the backbones as
soon as they are found, particularly if the backbone search does not terminate. To that
end we evaluate MINIBONES and CADIBACK as anytime algorithms and compare the
number of backbones they find over time. We modified the default configuration of MINI-
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BONES (minibones-core-based, i.e., corresponding to options “~e -i -c 100”) to
print a backbone as soon as it is found and evaluated it against the default version of
CADIBACK on the 2022 SAT competition benchmark set. The results are presented on
the right in Figure 6.4.

Finally we show in Figure 6.5 the performance of the default version of CADIBACK
versus the iterative and core-based versions of MINIBONES on the last three SAT
Competitions.
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Figure 6.2: Benchmarks solved (vertical) over time in seconds (horizontal) where back-
bone extraction completed within 5,000 seconds. CADIBACK configurations: default
all optimizations enabled except chunking nor cores; no-flip no model rotation (do not
use flipping information); no-fixed do not check candidates for being fixed explicitly;
chunking fine grained chunk size control (X = 10 instead of K = o0); one-by-
one single literal chunks (K = 1); cores core-based preprocessing; Nno-constrain
activation literals instead of “constrain” API; no-filter do not filter backbone candi-
dates by the disagreement condition; plain sets K = 1 (as one-by-one) and disables
all other optimizations. MINIBONES configurations: iterative Algorithm 5 in [145]
(“-u -c 100 -1i”); core-based Algorithm 7 in [145] (“~e -c 100 -i").

57



solved failed to mo time space max best unique

cadiback-default 732 842 831 11 694027 110614 2600 53
cadiback-no-flip 729 845 837 8 686832 103021 2600 58
cadiback-no-fixed 728 846 835 11 682242 106129 2600 70
cadiback-set-phase 726 848 838 10 657492 108737 2565 163
cadiback-really-flip 725 849 838 11 640447 105963 2600 46
cadiback-chunking 702 872 861 11 630633 93625 2600 108
cadiback-one-by-one 692 882 871 11 715101 86152 2600 30
cadiback-no-inprocessing 690 884 873 11 688418 93947 2628 116
cadiback-cores 672 902 891 11 570724 100362 2600 78
cadiback-no-constrain 670 904 890 14 693284 93836 2546 41
cadiback-no-filter 612 962 951 11 562853 72360 2600 9
cadiback-plain 553 1021 1010 11 544688 58500 2655 13
minibones-iterative 458 1340 1279 61 402645 110138 5281 54
minibones-core-based 450 1348 1283 65 348856 72793 3542 52

—_
N OO0~ OO~ h~DNDOH—

Table 6.1: More detailed results for the runs plotted in Fig. 6.1 on the large SAT
competition 2004 - 2022 benchmark set where: solved instances; failed to solved;
to time out of 5,000 seconds hits; MmO memory limit of 7 GB hit; time accumulated
process time of solved instances (in seconds); space sum of the maximum memory
usage over solved instances (in MB); max maximum memory usage on solved instances
(in MB); best number of instances with best shortest solving time; unique uniquely
solved number of instances. For the description of the configurations see caption of
Fig. 6.1.
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Figure 6.3: Comparing run-time of configuration cadiback-default (horizontal) with
configuration minibones-iterative (vertical) solving the large benchmark set from 2004-
2022. A cross above the diagonal means CADIBACK is faster than MINIBONES.
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Figure 6.4: The left plot compares the one-by-one and the default configuration.
Timeouts for one of the configurations are marked in the margin. Highlighted on the
left are 133 (out of 1798) benchmarks that have exactly one model (every variable
is in the backbone). Using an infinite chunk size (the default), such benchmarks are
always solved in 3 SAT calls. The right plot compares MINIBONES and CADIBACK
in an anytime setting. Shown are the number of backbones found combined across all
instances in the SAT competition 2022 benchmark set.
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Figure 6.5: Benchmarks solved on satisfiable instances from the last three competitions
(2020-2022).
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Abstract The backbone of a satisfiable formula is the set of literals that hold true
in every model. In this paper we introduce Single Unit Resolution Backbone (SURB)
which names both a polynomial-time algorithm for backbone extraction and a class of
propositional formulas on which it is complete. We show that this class is a superset
of the polynomial-time solvable SLUR formulas. The presented algorithm meets a
lower bound on time complexity under the strong exponential-time hypothesis. As a
second contribution, we present a version that operates on the binary implication graph
(BIG) and implement it as a preprocessor in the recently introduced backbone extractor
CADIBACK. Experiments on a large number of SAT competition benchmarks show that
our implementation results in faster BIG backbone extraction by an order of magnitude.
Additionally, incorporating it as a preprocessor enables CADIBACK to identify up to
four times as many backbone literals early on.
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7.1 Introduction

Backbone extraction has been put forward as an effective technique for a wide variety
of applications including chip verification, specifically fault localization [187-189], and
interactive configuration [185]. The concept of the backbone, which refers to the set of
literals that hold true in all models of a satisfiable formula, was initially studied when
investigating the hardness of (random) propositional formulas [181, 205, 206]. Since
then, a number of practical applications for backbone extraction have been discovered.
One notable example is the improved performance in SAT solving itself [194, 207]. In
fact, the proposed algorithm in this paper has been implemented as a cheaper version of
failed literal elimination in SAT solvers developed by one of the authors [208]. Other
related areas like maximum satisfiability [190-193] have been found to benefit from
early knowledge of backbone literals.

In these applications, it is highly advantageous to promptly access as many backbone
literals as possible. This can be due to two key reasons: either the backbone computation
is bound by a time limit or the identification of a backbone literal triggers additional
computations that can be executed in parallel. As a result, our focus shifts to the time
taken to identify individual backbone literals rather than the completion of the entire
backbone extraction.

The state-of-the-art in backbone extraction has remained unchanged for a long time,
until recently CADIBACK [6] was introduced, exhibiting significantly better perfor-
mance. This was achieved by using the modern SAT solver CADICAL and tightly
integrating features currently not found in any other SAT solver. Our contribution
presented in this paper is orthogonal to that. Instead of using an exponential approach
based on incremental SAT solving, we use a polynomial time algorithm to extract the
backbone from a subset of the formula.

In SAT solving, Single Look-ahead Unit Resolution (SLUR) [209], independently
discovered as Backtrack-once in [210], defines a class of formulas that are solvable
in polynomial time. Similar to that, we define a simple polynomial algorithm called
SURB and use it to define a subclass of propositional formulas on which backbone
extraction is easy. We formally show that SURB is a strict superset of SLUR. As
another novel contribution, we present a practical algorithm that exhibits considerably
better performance in our experimental evaluation than SURB. The algorithm finds all
backbone literals in the binary implication graph. We implement it as a preprocessor,
extending the recently introduced backbone extractor CADIBACK [6]. Results show that
our implementation outperforms the previous state-of-the-art by an order of magnitude.
Furthermore, our extension enables CADIBACK to identify a subset of all backbone
literals within a fraction of the time required to find an initial model.

7.2 Preliminaries

We consider satisfiable SAT formulas in conjunctive normal form (CNF). For a formula
F, V denotes the set of variables, £ the set of literals, n the number of literals, |F|
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the number of literal occurrences, ¢ C £ commonly denotes an assignment that can
also be interpreted as the conjunction of its literals and F, -1 ¢ denotes that literal
£ can be derived by repeated application of the unit propagation rule [211] under o.
The assignment resulting from unit propagation until fixpoint is {k | F|, F1 k}. If no
conflict arises, the assignment can be extended and the computation repeated until a
full assignment is reached. The entire process can be computed in O(|F|) [212]. As
a convenience, if a conflict is derived we write F, 1 4. This notation extends to
conflicting assignments 4 € o. The Binary Implication Graph (BIG) of F has a node for
each literal in £ and two edges (—u, v) and (—v, u) for each binary clause {u, v} [213].
By contraposition, if there is a path from « to v, there is also a path from —v to —u [214].
Equivalent Literal Substitution (ELS) identifies all cycles in the BIG and replaces them
with a single representative. Failed Literal Elimination (FLE) [215] identifies literals £
with Fj, 1 4 and adds —¢ as a unit clause. This is done repeatedly until a fixpoint is
reached.

Algorithm 4 (SLUR) [209] may return unsatisfiability, a satisfying assignment, or
give up. If it succeeds for any variable ordering, the formula is in the SLUR class [216].
Notable subsets of SLUR include 2-CNF which contain only binary clauses, and Horn-
3-CNF that contain length 3 clauses with at most one positive literal.

SLUR (CNF F)

1 o« {k|FtF1k}
2 if 4 € 0 then return UNSAT
3 forveV

4 o {k| Fiono F1k}

5 o0 {k| Fion F1 k)

6 if4 €otand 4 € 0~ then
7 return GIVE-UP

8 if 4 €0 theno + o~

9 else o<+ ot

10 return SAT, o

Algorithm 4: Single Look-ahead Unit Resolution. Success depends on the formula and
the variable order chosen in line 3.

7.3 Single Unit Resolution Backbone

This section, introduces the algorithm SURB (Single Unit Resolution Backbone) for
finding backbone literals and defines a subclass of formulas with the same name.

The algorithm is sound, since the negation of failed literals are backbone literals
and only previously identified backbone literals are added to the propagation. In the
following we introduce the SURB subclass based on Algorithm 2.
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SURB (CNF F)

1 B+ 0

2 forlel

3 if Figae 1 4 then

4 B <« {k | Fipp-e b1 k}

5 return B

Algorithm 5: Single Unit Resolution Backbone identifies a subset of the backbone. The
order of literals chosen in line 2 is non-deterministic and can influence which backbone
literals are identified.

Definition 7.1. A formula F is in SURB if the algorithm identifies the entire backbone
for any order of literal selection.

The relation of SURB and other classes can be summarized as the following, where
FLBE is defined later in Def. 2.

2-CNF C SLUR C SURB C FLBE

Similar to SLUR, running Algorithm 2 does not indicate the membership in the class.
Deciding if a formula is in SLUR is co-NP-complete [217]. We leave a similar proof
for SURB to future work. In practice, this means that without additional knowledge
about the formula, it is unknown if the backbone extends beyond the literals identified
by SURB. We now formally prove the subset relations from above.

Theorem 7.2. SLUR C SURB

Proof. Assume a satisfiable formula F has a backbone literal —¢ that is not identified
by SURB, we show SLUR can fail on F. Let ¢ be the first variable that is decided
by SLUR. By the assumption Fsx¢ I71 ¢ for some set B and therefore especially for
B = ). SLUR chooses o to proceed and will eventually give up since —/ is a backbone
literal. O

We use the example below to show that not all formulas in SURB are in SLUR.

Example 7.3. Consider the formula F = (-ma VbV =cVd) A (ma VbV —cV =d) A
(maVbVeVd)A(maVbVeVd).

SLUR fails for the variable order [a, b, ¢, d]. However, F has neither failed nor
backbone literals.

Definition 7.4. Failed Literal Backbone Equivalent (FLBE) is the class of formulas on
which the negation of every backbone literal is a failed literal.

This class defines the upper bound on which SURB is complete, if it had an oracle to
determine the optimal ordering of literals to propagate. Without the correct ordering,
SURB would need to be executed up to n times to identify the entire backbone of a
formula in FLBE. The following example illustrates this.
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Example 7.5. Consider the formula
F=(-aV-b)A(maVb)A(aV-cV-d)A(aV-cVd).
If c is propagated before a, only —a will be found by SURB. However, both ¢ and ¢
are failed literals and there are no further backbone literals, thus F is in FLBE.

Now we proceed to discuss the time complexity of SURB. It performs up to n
propagations and therefore has a worst-case complexity of O(n - |F|). Jarvisalo and
Korhonen [218] suggest that any algorithm to find even a single backbone literal in a
Horn-3-CNF has worst-case complexity of O(n - |F|) under the strong exponential time
hypothesis [219]. Since SURB subsumes the problem and is complete on a superset of
Horn-3-CNEF, it is unlikely that we can achieve a better worst-case complexity than what
this simple algorithm offers.

The same asymptotic time complexity is also shared by SLUR [209]. However, while
SLUR continuously extends an assignment and uses it for future propagations, SURB
only saves backbone literals. As in the end both algorithms propagate each literal at least
once, keeping more literals assigned can lead to a faster overall runtime. We exploit this
idea in the design of Algorithm 6 in the next section.

7.4 BIG Backbones

As the algorithm presented in the previous section is generally not guaranteed to identify
the entire backbone of a formula, it can only serve as part of the backbone search.
Applying SURB to the entire formula would be too slow, even with the highly optimized
implementations of unit propagation in modern SAT solvers. It is also not possible to
efficiently identify the subset of a formula that is in SLUR [217]. We therefore focus on
the binary clauses where propagation can be implemented more efficiently and SURB is
complete. The following proposition justifies focusing on a subset.

Proposition 7.6. The backbone found on a subset of a satisfiable formula F is a subset
of the backbone of F.

In Algorithm 6, we present KB3, a version of SURB, which is only valid for 2-CNFs
and avoids re-propagation by keeping an assignment between propagations.

The example in Figure 7.1 illustrates why we can keep literals assigned without
encountering spurious conflicts. Specifically, running the KB3 algorithm for this formula,
when c is picked as the first candidate (line 4), all candidates with a path to —c are
blocked until the assignment is reset in line 3.

Theorem 7.7. Algorithm 6 is sound and complete on 2-CNF.

Proof. Since 2-CNF is a subset of SURB we can rely on the completeness of Algorithm
5 for any variable ordering. We can therefore assume the set B to be empty for every
candidate ¢ in line 3. Every literal is either eliminated in line 7 or eventually propagated.
Note that propagation under an assignment is only more likely to derive a conflict. Any
eliminated literal has been assigned by a previous propagation that did not lead to a
conflict.
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KB3 (2-CNF F)

1 B0, AL
2 while A#()

3 o+ B, A+

4 for £ € A // next candidate

5 if -¢ € 0 then continue
6 A+~ AU {t}

7 if { € 0 then continue
S o e (k[ Fonbi k)

9 if 4 € o’ then

10 B+ BU{k | F¢ 1k}
11 A+~ AUBU-B

12 o+ oUB

13 else o+ o

14 A~ A\A

15 return B

Algorithm 6: Keep assignment BIG Backbone (KB3) is only defined on 2-CNFs, for
which it is complete regardless of the literal selection order (in line 4).

)~~~
\ \
ORORORO

Figure 7.1: BIG of (a V =b) A (bV —¢) A (bV ¢) A (¢ V —d).

To show soundness, consider a conflict derived in line 8. Let ¢ and —c be any pair of
conflicting literals and ¢ the current candidate. We show neither ¢ nor —c are in ¢ and
therefore F|, -1 4 which implies that —¢ is a backbone literal. It is impossible for ¢ and
—c to both be in o since the conflict would have prevented the assignment from being
updated in line 13. Without loss of generality assume c to be in ¢ and the propagation
of ¢ to imply —c. Since ¢ implies —c, there is a path from ¢ to —c in the BIG and by
contraposition there is also a path from c to —¢. The set o is the result of propagation
therefore every literal implied by c is included. But if =¢ € o the current candidate
would have been skipped in line 5. O

By this proof, ¢ is a failed literal in the original formula. Therefore a resolution proof
for —¢ being in the backbone can be found by resolving the clauses corresponding to the
paths from £ to ¢ and ¢ to —c in the BIG.

The example below shows that Algorithm 6 does not extend to Horn-3-CNF.
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Example 7.8. Consider the formula (—a V =bV —¢) A (—a V =bV ¢). Both —a, b, ¢ and
a, —b, —c satisfy the formula, the backbone is therefore empty. However, if the candi-
dates are picked in the order [a, b, . . .] literal —b is identified as part of the backbone.

7.5 Related Techniques

We now discuss some previous work on extracting backbones from BIGs [214], as
well as other techniques used in failed literal extraction. We refer to Figure 7.1 for an
illustration of the following discussions. The algorithm Van Gelder describes in [214]
is essentially equivalent to SURB with a depth-first search order, instead of the usual
breadth-first propagation. Whenever the BFS propagation of a literal —a causes the
assignment of conflicting literals c and —¢, the BIG does not only contain a path from
—a to ¢ and —a to —c but by contraposition also a path from c to a. Thus, with a DFS
order the first conflicting literal b, is always in the backbone. Furthermore, b is the
highest such literal in the search tree, so propagating it will identify all other backbones
that can be found for this conflict. To emulate this desirable property with BFS, we can
explicitly store the search tree and identify the first UTP[220] after a conflict occurs.

Stamping [60, 221] prevents a literal to be considered as a candidate, if it has been
propagated since the last backbone literal was identified. However, such a literal must
still be re-propagated if it is encountered during another propagation, as the previous
example demonstrates for the candidate order [d, —a, . . .]. KB3 subsumes this technique,
since any candidate that is not propagated due to stamping would still be assigned and
added to A in line 6, at the first time it is encountered. Moreover, while stamping is
reset when a conflict is encountered, KB3 still maintains part of the assignment.

Roots [70, 214, 222] only propagates a candidate if it has no predecessor in the
BIG. Removing the negation of an identified backbone literal can add new roots. This
optimization is part of Van Gelder’s algorithm and also used in failed literal elimination.
To maintain completeness, it is necessary to run ELS until fixpoint, if only the BIG is
considered one round is sufficient. Since a root cannot be implied by another candidate,
this technique also subsumes Stamping. Note that combining this technique with
KB3 increases the size of the unkept assignment when a conflict is encountered and can
therefore also have negative effects.

We present two scalable examples of 2-CNF formulas. Figure 7.2 is lifted from
[214]. They used the example to show that their algorithm expands O(n?) edges and is
therefore not more efficient than computing the two-closure. In contrast, our algorithm
expands each edge exactly once and is thus in O(n?). We can therefore achieve a
speedup of n times and reach the lower bound complexity of performing a single
propagation. However, as the example in Figure 7.3 shows, the worst case complexity
has not changed. Each of the O(n) roots in group R expands the O(n?) edges in P and
the at-most-one constraint prevents any of the propagations from being reused.
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Figure 7.2: The positive literals are split into four equal groups. The double-arrow
denotes that each literal of one group implies all literals of the other [214].

Figure 7.3: The literals in R are connected to =R with an at-most-one constraint,
meaning that each literal has an edge to the negation of every other literal. They all
connect to the highest literal in P. Literals in P have an edge to every lower literal.

7.6 Implementation and Evaluation

We implement the new algorithm KB3 [32] and the base version SURB with various
optimizations as preprocessors for CADIBACK [6]. For each configuration we tested
both DFS and BFS for propagation. The binary clauses are extracted after some basic
preprocessing has been performed by CADICAL and stored as an adjacency array. All
backbone literals in the BIG are then extracted and added as unit clauses before the
first call to a SAT solver. To increase trust, we checked that all configurations identify
the same backbone on close to a billion randomly generated 2-CNF. We use a cluster
with 20 nodes each running two AMD EPYC 7313 at 3.7Ghz under Ubuntu 22.04 LTS.
Memory is limited to 15GB per instance.

For benchmarking, we collected formulas from SAT competitions 2004-2022, and
removed duplicates to obtain a large and representative set. We ran Kissat 3.0.0 [144]
for 5,000 seconds to identify satisfiable benchmarks. This left us with 1798 benchmarks
(available at https://cca.informatik.uni-freiburg.de/sc04to22sat.zip (6 GB) and [31]).

Table 7.4 presents the comparison of the different configurations. Even though the
source code from [214] is not available, the configuration of SURB with DFS and
ELS+Roots in our implementation is equivalent to what they describe. The results
show that the new algorithm clearly outperforms the configuration of [214], being more
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https://cca.informatik.uni-freiburg.de/sc04to22sat.zip

SURB KB3

BFS DFS BFS DFS
Base 21136.11 21287.25 647.53 728.46
ELS 20523.81 20756.81 640.43 733.47
ELS+Roots 18164.47 18756.10 643.57 721.09
stamp 19205.73 19636.01
ELS+Stamping 18947.99 19392.12
ELS+Roots+UIP 822.49

Figure 7.4: The time in seconds to run backbone extraction on the BIG until completion
accumulated over all satisfiable benchmarks from the last 19 SAT competitions (2004-
2022). The time to run ELS on the entire benchmark set is 50.59 seconds and included
for the algorithms which use it.

than 29 times faster. Three benchmarks are particularly hard for SURB. Only the
BFS configurations without stamping solve them within the time limit of 5000 seconds,
whereas KB3 takes less than a second to solve them. Furthermore, the additional
optimizations work well for the base version, however, as expected KB3 does not seem
to benefit from them as much.

As argued before, KB3 subsumes stamping and the combination is therefore not
presented. Similarly, the UIP technique is not necessary when a depth first order is used
for propagation and has not been implemented for SURB.

In the second part of the evaluation we investigate how the best configuration of
KB3 (BFS and ELS) performs as a preprocessor for the complete backbone extractor
CADIBACK. We log the time of identifying a backbone literal for the 533 benchmarks
from the past three SAT competitions (2020-2022) and present their accumulation over
time in Figure 7.5. Even though we limit the run time to 1000 seconds, still more than
10 Million backbone literals are identified. The version with KB3 holds the biggest
absolute advantage at around 210 seconds, where it identified 5.5 Million backbone
literals, 4.5 times as many as the base version has found at that point.

7.7 Conclusion

In this paper we proposed a new algorithm for backbone extraction from the binary
implication graph of a formula. The new algorithm exhibits a significant performance
advantage over the previous state-of-the-art approach. Furthermore, we have integrated
our algorithm into the backbone extractor CADIBACK as a preprocessor, yielding
remarkable improvements, particularly in the early identification of backbone literals.
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Figure 7.5: Presented is the number of backbone literals identified over time. We
compare default CADIBACK to a version with added preprocessing performed by KB3.
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Abstract We introduce a formalization of ternary simulation as abstract interpretation
along with a widening operator to speed up convergence. With the same goal, we present
a subsumption algorithm that can determine termination earlier than the usual approach
using hash sets. Additionally, we introduce a narrowing operator that utilizes recent
advances in backbone extraction, allowing to increase the overapproximation precision
in simulation at any time. The experiments evaluate the presented techniques in the
context of hardware model checking.
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8.1 Introduction

Optimizing reachability analysis and model checking is an important topic in formal
verification of hardware designs. Ternary simulation [223] is a powerful method utilized
in various preprocessing techniques as well as tightly integrated in standard model
checking approaches like PDR [224]. For example, phase abstraction [223] leverages
ternary simulation for identifying a group of oscillating signals used to simplify the
original hardware designs.

By using a three-valued logic {1,0, X }, at initialization the inputs are assigned un-
known values (X) while latch variables are assigned according to their reset definitions;
the successor states are then computed based on the three-valued semantics. Differently
from using conventional symbolic execution, as a result an over-approximation of reach-
able states is obtained at termination. This also allowed us in recent work on model
checking certificates to provide an alternative notion of cube semantics [13].

Even though ternary simulation enables fast computation in practice even on industrial
designs [225], the key challenge, is the exponential time for convergence in the worst
case, due to the PSPACE complete nature of symbolic reachability analysis, also known
as the “state explosion” problem. Furthermore, while ternary simulation has been
implemented in numerous state-of-the-art tools, there are still significant gaps between
its precise theory and practical applications.

On another matter, abstract interpretation [226] helps to obtain sound and precise
overapproximations of the state space, and has been commonly used in the static analysis
of software systems [227]. It relies on a logical approximation relation between concrete
models and abstract predicates to produce a sound fixpoint approximation.

Related to ternary simulation is Symbolic Trajectory Evaluation (STE) [228], which
can be characterized as a combination of symbolic execution and ternary simulation, but
with the ternary value functions encoded as BDDs.

Previous work [229] has shown, from a theoretical point of view, the Galois connection
between a ternary model and Boolean model as a form of abstract interpretation. We
focus on practical applications of abstract interpretation and further utilize narrowing
and widening operators to refine lossy unknown values and ensure early termination.

In this paper, we make an attempt to bridge the gap by formalizing ternary simulation
as a form of abstract interpretation, which is more succinct than the formalism presented
in [229], and at the same time closer to practical implementations of simulation.

This enables us to leverage the framework of abstract interpretation with decades of
extensive research to enhance bit-level hardware verification. We begin by defining an
abstract domain and transformation functions for ternary simulation. Furthermore, we
introduce a widening operator in the strict sense of abstract interpretation, guaranteeing
early termination to avoid exponential computation. We also present a weaker widening
operator, which might be more suitable for practical applications and an algorithm for
efficiently determining convergence. More importantly, we further enhance the technique
by making use of backbone extraction [180] in defining the narrowing operator. Lastly,
we also demonstrate the effectiveness of our method in the experimental evaluation.
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8.2 Circuit

In the rest of the paper, we assume standard semantics for Boolean operators [230] and
use the notations from abstract interpretation theory [231].

Since ternary simulation relies on the structure of a Boolean circuit, our definition is
more detailed than a simple transition relation and defines transition functions in the
form of an and-inverter graph (AIG).

Definition 8.1 Circuit. A Boolean circuit C'is represented by the tuple (I, L, A, R, F', D)
where I = {il, ce ,i#[}, L= {l#[+1, e l#[+#L}, A= {l#]+#L+1, e 7Z#I+#L+#A}
are inputs, latches and (AND) gates respectively and are ordered continuously. Let
S =SuU{~L| e S} forany such set S denote the set of literals over S and VAR the
inverse operation (determining variables from literals). With that, the set of all literals is
A=TULUA.

The (total) functions R : L — {0,1} and F' : L — A define the initial state of
the circuit and the transition behavior of the latches respectively. The (total) function
D : A — A x A gives the definition of each AND gate and has to be stratified, i.e.:
Va; € A: D(a;) = (aj,ar) = j <iNk <.

Definition 8.2 Cubes and States. For a set of literals S we further define the following
sets:

* c € P(S) is called a cube with P(.S) the power set of S,
e Pi(S)={ceP(S) | L€ c= —L¢c}isthe set of consistent cubes, and
o Po(S) = {s € P1(S) | |s| = |S|} are the complete cubes.

Additionally, we define v : P1(A) x A — {0, 1, X} to get the value of a literal in a
consistent cube and further use 7 : Ax{0,1, X'} — AU{e} to change the sign of a literal:

1, if fec £, ifb=1
v(c,l) =30, if-fec T(l,0) =< =, ifb=0
X, otherwise €, otherwise

These are the only functions that explicitly deal with three-valued semantics {0, 1, X }.
Otherwise our formalism uses cubes instead of full assignments mapping to {0, 1, X'}.
To further simplify the exposition we use € as the neutral element of set-addition, i.e.,
any set containing € is equivalent to the same set without it.

The stratification condition in Def. 8.1 ensure that the directed graph induced by D is
a acyclic, i.e., a directed acyclic graph (DAG), with inputs and latches as leaves. This
makes the transition function of a circuit well-defined:

Definition 8.3 Transition. For a circuit C' = (I, L, A, R, F, D) we define the following
functions:

o exty : Po(L) — P(P2(L U L)),
exti(s) ={s' € Po(IUL)|s = s}
that expands a state over latches with all possible inputs.
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exts : Po(I U L) — Po(A) is defined as fixpoint of

o(s) = {r(a,AND(v(s, 1), v(s,7))) | (a, (I, 7)) € D}

and can be computed in a single pass over the gates due to the stratification
assumption. Since s is a complete state and therefore v(s, -) maps to {0,1}, AND
computes the standard Boolean function (“A”).

natr(s) = {r(l,v(s,n)) | (¢{,n) € F}
extracts the successor state from next-state function of a latch.

fLiPy(L) — P(Py(L)), with
fL(s) = {natr(exta(s)) | s € extr(s)},
maps a state to the set of its successors in C.

8.3 Ternary Simulation as Abstract Interpretation

In this section we define the abstract transformation from a concrete circuit to a ternary
circuit. We will consider two lattices (X, C), with ¥ = P(Py(L)) for the concrete
semantics of the circuit and (2, =), with Q = P(L) for abstract semantics utilizing
ternary simulation.

We prefer to use the set of cubes (2 instead of three-valued states: {0, 1, X }‘L U L.
Here we use L to denote “no-state” (inconsistent cube in P(L)), not to be confused with
the ternary state (X, X, ... ) representing all states equivalent to the empty cube in our
abstract domain.

Theorem 8.4. (3, C) and (2, =) are complete lattices.
We further define two functions to translate between them:

Definition 8.5. The abstraction function o : ¥ — Q) is defined as a(0) = () s.
seo

Definition 8.6. The concretization function v : @ — ¥ is defined as y(w) = {s | s €
Py(L) A s = wh.

Theorem 8.7. The tuple (v, 3,2, ) is a Galois connection.

Proof.  For sets of states o € ¥ and cube w € 2, we have:

alo) = w by Def. 8.5
S (Ns)=w
se€o
&S Vseo:s=w with o C Py(L)
& o0 C{s|sePy(L)Ns=w} by Def. 8.6
& o0 Cy(w) O

For the concrete transition function, we define the transition of a set of states as the
union of their successors.

Definition 8.8. The concrete transition function f : ¥ — 3 is defined as f(o) =

U f5(s).

sco
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On the abstract side we finally formally define ternary simulation as the abstract
transition function that allows us to transition in the abstract domain.

Definition 8.9. We define f# : Q — Q as the abstract transition function with
7 (w) = natp(extX(w)), where ext¥ : P1(I U L) — P1(A) follows the definition of
ext 4 except AND is replaced by AND* defined by the table below:

1 r | anD¥(l,7)

0o - 0

-0 0 s .

1 | where ‘-’ denotes either O or 1.
1 X X

X 1 X

We have to show that f # is indeed a valid abstraction of f.
Theorem 8.10. (f o )(w) C (yo f#)(w)
For that we will first define the depth of a gate.

Definition 8.11 Depth. The depth of a gate a € A is defined as the length of the longest
path from a to a leave in the DAG induced by D. The depth of an input [ or latch L is 0.

We state a connection between the transition functions.

Lemma 8.12. Forw € P1(L), s € y(w), a € TU LU A, if v(exth(w),a) € {0,1}
then v(exta(s),a) = v(exth(w),a).

Proof. The proof proceeds by induction over the depth n of a. For n = 0, a is either an
input or a latch literal, where only the latch might be in w in which case it will also be
in both extensions. Now for any gate a at depth n + 1 let (I,7) = D(a), both [ and r
have depth no greater than n. Further, in case ¢ = X the claim holds trivially. Otherwise,
neither [ nor r are X, thus AND equals AND* or exactly one of them is X and the other
one is 0. In the latter case, both extensions in y(w) result in 0. t

We continue to the proof of the Theorem 8.10.

Proof of Theorem 8.10. Suppose there is a o € (f o 7)(w) that differs from all states
in (y o f#)(w) in at least one literal. Let w be as stated in the theorem, o = ~(w)
and o’ a state in (y o f#)(w) that differs from o in the fewest number of literals,
one of them being /. We consider two cases: (1) v(f7(w),¢) = X: By definition of
7 the set v(f #(w)) also contains a state that is the same as ¢’ but matches o € ¢,
contradicting our assumption. (2) v(f#(w),¢) = ¢, with ¢ € {0,1}: Let a = F(¢),
then v(ezt¥, a) = c. By Lemma 8.12 and Def 8.8 o matches o’ on ¢ again contradicting
our assumption. O
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8.4 Widening

Even though ternary simulation can be implemented very efficiently, it is exponential in
the size of the circuit. In fact, this exponential behavior is easily exposed by adding a
64-bit counter that is independent of the rest of the design.

The widening operators, as introduced in [232], promise to alleviate that problem by
guaranteeing a faster convergence. However the demands on the properties of such a
widening operator are quite strong. We will introduce V that fulfills both the covering
and termination property [233] and additionally the more conservative operator V that
does not meet these strict criteria, but exhibit superior performance in our application.
A similar operation has been introduced as X-saturation in [225].

Definition 8.13. V : P(L) x P(L) - P(L), aVb=anNb.
Theorem 8.14. V is:
1. covering: Va,b € P(L) :a=aV b andb=aV b

2. terminating: For an ascending chain {a;}i>o, the chain by = ag,biy1 = b; V
a;+1 Stabilizes after a finite number of terms.

Definition 8.15. V : P(L) x P(L) — P(L) with
a V b =10\ {¢} and where neither ¢ € b, ~¢ € a nor VAR({)
have been removed by widening before.

8.5 Narrowing

Ternary simulation can produce a high number of spurious traces, which is even more
true if widening is used. Narrowing operators [233] increase the precision of the
simulation at any point, thus removing a set of spurious traces while still maintaining a
valid over-approximation.

Our narrowing operator for ternary simulation A relies on the backbone of the
transition between two cubes. The backbone of a satisfiable formula, is the set of literals
that hold true in all assignments. It is only applicable to two cubes a, b if (f )" (a) = b,
were 1 is the number of function applications. For simplicity we will only define it for a
single step of the transition function.

Definition 8.16. A : P(L) x P(L) — P(L) witha A b = F_I(B(a A D A F(b))),
and where

o F(b) ={1(F(¢),v(b,!)) | £ € VAR(D)} denotes the “primed” version of a cube
b,

o F71(c) ={7(t,v(c,n)) | (¢{,n) € F} the inverse and

* B(®) denotes the backbone of a Boolean formula ®.
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8.6 Termination via Subsumption

In both, collection semantics of abstract interpretation [231] and ternary simulation [225],
termination is defined as a subsumption check, i.e., the simulation terminates if a cube
implies a previously encountered cube. At that point the encountered cubes represent
an overapproximation of all reachable states. Such a check can be implemented using
BDDs, however as the authors of [225] state: “In practice, the performance of such
approach is prohibitive”. They instead use a hash table and only terminate, when an
exact match to a previously encountered cube is found.

We utilize a different algorithm used for forward subsumption detection in SAT
solving [123, 230]. The algorithm relies on a one-watch data structure, i.e., each cube
appears in the watch-list of one of its literals.

subsumed (cube C)

1 mark all literals in C

2 for literal £in C do

3 for cube ¢’ in watch[/] do

4 ¢’ + unmarked literal in ¢’

if ¢/ = invalid then // No such literal
lassos.add(pred(c), ¢')
if |c'| = |c| then // Exact match

return lassos
else watch[¢'].add(c)
10 watch[/].clear()

ot

© 0 N O

11 unmark all literals

Algorithm 7: Subsumption check. Identifies all previous cubes that imply C, and thereby
induce a lasso in the state space. Requires one literal of each cube to be watched.

Whenever the algorithm reaches line 6, a sound overapproximation is found. However,
for some applications it can be beneficial to consider more than one cube lasso. For
example in phase abstraction [223] the length of both the stem and the loop of the lasso
should be divisible by some small number.

8.7 Evaluation

Our preliminary implementation does not cover the entirety of Sect. 8.4 and 8.5. The
simulation itself is fairly efficient, calculating all the gates in a single linear pass, using
a few basic bit operations. However, we do not reorder gates to allow for more efficient
packing / random access of state bits or parallelization using SIMD / threads.
Termination is implemented both with hashing and forward-subsumption for compar-
ison. We also provide an implementation of the widening operator V. Ours differs from
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#atches base widening termination

bob12m04 43950 19910.06  19910.07 153 10.05
bob12m15 448  13311.62  13311.60 1210.40
bobsmnut1 644 1071021 10710.19 10610.18

shiftladd 27 2011.20 2011.25 110.01
6s376r 4708 1451766.34 116116.30 116 14.20
6s47 815 to 8135.63 610.30
6s100 97598 to 36137.53 36141.48
6s107 1568 to 746116.93 74611.18
6s149 12781 to 414781 4112.88
6s202b41 68881 to 8574145.71 8574128.35
6s204b16 28986 to 4034119.33 4034113.51
6s205b20 68842 to 8727146.56 8727128.08
6s355tbgray 15091 to 221137.07 221115.51
6s400rb7g19 14665 to 22113696 221111.00
6s342rb1o9 56838 to to 1894 | 354.60
cucnt128 128 to to 011.82
cucnt32 32 to to 010.01

Table 8.1: We evaluated three versions: base ternary simulation with hashing and no
widening, a configuration using widening (V) if the cube has not reduced in size in a
few thousand iterations, and one that employs both widening and the early termination
using the forward subsumption algorithm. Presented is the runtime and the number of
transients that could be found for each circuit. Our benchmarkset included all 20 815
circuits from the HWMCC (2007-2020)[20]. The table lists all instances where either
transients were lost to the optimization or any of the configurations timed out (to).

the X-saturation described in [225] in that we do not eliminate all non-fixed latches,
but only pick a single one, which has not been affected by widening before. As V
removes too many literals, it is not evaluated. We do not yet have an implementation for
narrowing.

All experiments were conducted on our cluster with Intel Xeon E5-2620 v4 CPUs
running at 2.10 GHz, with a time limit of 2 hours. As an example application of ternary
simulation and to gauge its precision, we extract transients. Transients are latches that
assume a constant value after a finite number of steps (constant in the loop of any cube
lasso). The results are shown in Table 8.1.

Considering the high number of benchmarks, both widening and earlier termination
had very little impact on the number of identified transient. However, they did help with
a number of related benchmarks that originally exceeded the two-hour time limit. Note
that the final configuration using both techniques solved all instances.

Lastly, we ran narrowing at every step until completion. Completely disregarding the
runtime, this lead to an increase of 42% in identified transients.
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Chapter 9

Certifying Phase Abstraction

Published In International Joint Conference on Automated Reasoning (IJCAR) 2024
Authors Nils Froleyks, Emily Yu, Armin Biere, and Keijo Heljanko
Changes from Published Version Corrected typos and adjusted layout.

Authors Contributions The original certificate generation for phase abstraction
was developed by E. Yu. The author generalized the phase abstraction preprocessing
technique along with the certificate construction, and implemented both. During fuzzing,
a bug in the theory was uncovered and is fixed in this version. The author further added
an aspect to the proof of correctness for the certificate format, which was missing in
earlier versions.

Abstract Certification helps to increase trust in formal verification of safety-critical
systems which require assurance on their correctness. In hardware model checking, a
widely used formal verification technique, phase abstraction is considered one of the
most commonly used preprocessing techniques. We present an approach to certify an
extended form of phase abstraction using a generic certificate format. As in earlier
works our approach involves constructing a witness circuit with an inductive invariant
property that certifies the correctness of the entire model checking process, which is then
validated by an independent certificate checker. We have implemented and evaluated
the proposed approach including certification for various preprocessing configurations
on hardware model checking competition benchmarks. As an improvement on previous
work in this area, the proposed method is able to efficiently complete certification with
an overhead of a fraction of model checking time.
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9.1 Introduction

Over the past few decades, symbolic model checking [33, 234, 235] has been put
forward as one of the most effective techniques in formal verification. A lot of trust
is placed into model checking tools when assessing the correctness of safety-critical
systems. However, model checkers themselves and the symbolic reasoning tools they
rely on, are exceedingly complex, both in the theory of their algorithms and their
practical implementation. They often run for multiple days, distributed across hundreds
of interacting threads, ultimately yielding a single bit of information signaling the
verification result. To increase trust in these tools, several approaches have attempted
to implement fully verified model checkers in a theorem proving environment such as
Isabelle [236-238]. However, the scalability as well as versatility of those tools is often
rather limited. For example, a technique update tends to require the entire tool to be
re-verified.

An alternative is to make model checkers provide machine-checkable proofs as
certificates that can be validated by independent checkers [239-246], which is already a
successful approach in SAT [133, 134], i.e., proofs are mandatory in the SAT competition
since 2016 [136], and they are a very hot topic in SMT [247-250] and beyond [247].
Crucially, these certificates need to be simple enough to allow the implementation of a
fully verified proof checker [138, 251, 252], and preferably verifiable “end-to-end”, i.e.,
certifying all stages of the model checking process, including all forms of preprocessing
steps.

The approach in [12, 13, 253] introduces a generic certificate format that can be
directly generated from hardware model checkers via book-keeping. More specifically,
the certificate is in the form of a Boolean circuit that comes with an inductive invariant,
such that it can be verified by six simple SAT checks. So far, it has shown to be effective
across several model checking techniques, but has not covered phase abstraction [223].
The experimental results from [12, 13, 253] also show performance challenges with
more complex model checking problems. In this paper, we focus on refining the format
for smaller certificates while accommodating additional techniques such as cone-of-
influence analysis reduction [235].

Phase abstraction [223] is a popular preprocessing technique which tries to simplify a
given model checking problem by detecting and removing periodic signals that exhibit
clock-like behaviors. These signals are essentially the clocks embedded in circuit
designs, often due to the design style of multi-phase clocking [254]. Phase abstraction
helps reduce circuit complexity therefore making the backend model checking task easier.
Differently from [255, 256] where the concept was first suggested, requiring syntactic
analysis and user inputs, phase abstraction [223] makes use of ternary simulation to
automatically identify a group of clock-like latches. Beside this, ternary simulation has
also been utilized in the context of temporal decomposition [257] for detecting transient
signals.

In industrial settings, due to the use of complex reset logic as well as circuit synthe-
sis optimizations, clock signals are sometimes delayed by a number of initialization
steps [225]. To further optimize the verification procedure we extend phase abstraction

80



by exploiting the power of ternary simulation to capture different classes of periodic
signals including those that are considered partially as clocks as well as equivalent sig-
nals [258]. An optimal phase number is computed based on globally extracted patterns,
which then is used to unfold the circuit multiple times. The resulting unfolded circuit
further undergoes rewriting and cone-of-influence reduction, before it is passed on to a
base model checker for final verification. To summarize our contributions are as follows:

1. We formalize, revisit and extend the original phase abstraction [223] by introduc-
ing periodic signals, that are then identified and removed for circuit reduction.
Our technique also subsumes temporal decomposition [257].

2. Building upon [12, 13, 253], we propose a refined certificate format for hardware
model checking based on a new restricted simulation relation. We demonstrate
how to build such a certificate for extended phase abstraction.

3. We present MC2, a certifying model checker that implements our proposed prepro-
cessing technique and generates certificates for the entire model checking process.
We show empirically that the approach requires small certification overhead in
contrast to [12, 13, 253].

After background in Section 9.2, Section 9.3 introduces the notion of periodic signals.
In Section 9.4 we present an extended variant of phase abstraction that simplifies the
original model with periodic signals. In Section 9.5 we define a refined certificate
format and present a general certification approach for phase abstraction. In Section 9.6
we describe the implementation of MC2 and then show the effectiveness of our new
certification approach in Section 9.7.

9.2 Background

Given a set of Boolean variables V, a literal [ is either a variable v € V or its negation
—w. A cube is considered to be a non-contradictory set of literals. Let ¢ be such a cube
over a set of variables L and assume L’ are copies of L, i.e., each | € L corresponds
bijectively to an " € L’. Then we write ¢(L’) to denote the resulting cube after replacing
the variables in ¢ with its corresponding variables in L’. For a Boolean formula f, we
write f|; and f|-; to denote the formula after substituting all occurrences of the literal [
with T and L respectively. We use equality symbols ~ [259] and = to denote syntactic
and semantic equivalence and similarly — and = to denote syntactic and semantic
logical implication.

Definition 9.1 Circuit. A circuit C' is represented by a quintuple (I, L, R, F, P), where
I and L are (finite) sets of input and latch variables. The reset functions are given
as R = {r(I,L) | | € L} where the individual reset function r;(I, L) for a latch
[ € L is a Boolean formula over inputs / and latches L. Similarly the set of transition
functions is given as F' = {f;(I, L) | | € L}. Finally P(I, L) denotes a safety property
corresponding to set of good states again encoded as a Boolean formula over the inputs
and latches.
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This notion can be extended to more general circuits involving for instance word-
level semantics or even continuous variables by replacing in this definition Boolean
formulas by corresponding predicates and terms in first-order logic modulo theories. For
simplicity of exposition we focus in this work on Boolean semantics, which matches
the main application area we are targeting, i.e., industrial-scale gate-level hardware
model checking. We claim that extensions to “circuits modulo theories” are quite
straightforward.

A concrete state is an assignment to variables I U L. Therefore the set of reset states
of a circuit is the set of satisfying assignments to R(L) = A (I ~ (I, L)).

Note the use of syntactic equality “~" in this definition. !€L

As in previous work [12] we assume acyclic reset functions. Therefore R(L) is
always satisfiable. A circuit with acyclic reset functions is called stratified.

As in bounded model checking [260], with I; and L; “temporal” copies of I and L at
time step ¢, the unrolling of a circuit up to length k is expressed as:

1€[0,k)

Cube simulation [13] subsumes ternary simulation such that a lasso found by ternary
simulation can also be found via cube simulation. A cube simulation is a sequence
of cubes ¢y, . .., 5, . . ., Cs1,, over latches L such that (1) R(L) = co; (2) ¢; A (L' ~
F(I,L)) = ¢, foralli € [0,0 + w), where ¢j_; is the primed copy of ¢;y1. Itis
called a cube lasso if ¢s4, A (L' =~ F(I,L)) = c§. In which case ¢ is the stem length
and w is the loop length. For § = 0, the initial cube is already part of the loop and for
w = 0, the lasso ends in a self-loop.

9.3 Periodic Signals

In sequential hardware designs, signals that eventually stabilize to a constant, i.e., to
T or L, after certain initialization steps are called transient signals [13, 257], whereas
oscillating signals have clock-like or periodic behaviors. A simplest example of a clock
is a latch that always oscillates between T and L.

Since hardware designs typically consist of complex initialization logic, there are
occurrences of delayed oscillating signals, like clocks that start ticking after several reset
steps, with a combination of transient and clock behaviours. We generalize this concept
to categorize latches as periodic signals associated with a duration (i.e., the number of
time steps for which a signal is delayed) and a phase number (i.e., the period length in a
periodic behavior). Moreover, our generalization also captures equivalent and antivalent
signals [258], as well as those that exhibit partial periodic behaviours. See Fig. 9.1 for
an example.

Definition 9.2 Periodic Signal. Given a circuit C = (I, L, R, F, P) and a cube lasso
€O, - - -Cs» - - -, C510- A periodic signal \; foralatchl € Lisdefinedas \; = (d, [v°,...,0" 1)
where d € N, n € Nt and ¢ is a latch literal or a constant, with d < §. We further
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0 1 0 1 0 1
a=l a=L a=T a=l a=T a=l a=T
SN N 1 1 1 B | o A =
c=L c=T c=L c=T c=L =L A = (1, e, =b])
d=L d=T d=T d=1 d=T Aa = (1,[T,d))
— _J
5=3 w=3

Figure 9.1: An example of a cube lasso over the latches | € L = {a, b, c,d}. In the
example the tall rectangles represent cubes as partial assignments, i.e., the second cube
from the left is (—a) A b A d. Phase 0 and 1 are marked on top of the cubes. As shown,
duration d = 1 and phase number n = 2 yield a high number of useful signals for this
cube lasso. Each latch [ is associated with a periodic pattern \; on the right describing
its behaviors for phase 0 and 1. If a latch is missing from a cube for a certain phase, it
has no constraint thus we use the equality of the latch to itself in the signal. Latch a
turns out to be a simple clock delayed by one step. Latches b and d behave clock-like
but only in phase 0. Latch c always has the opposite value of latch b in phase 1. Note
that we could also have —c in phase 1 of signal \; but choosing a single representative
for a set of equivalent signals is beneficial for the following simplification steps.

[
: forward‘ @ _unfold factor rewrite reduce
|

Figure 9.2: Circuit transformation using phase abstraction.

require that there exist k°, k' € Nt with k* - n 4+ d = § and k' - n = w + 1 such that
foralli € [0,n) and j € [0,k° + k') we have ¢; ., = (I = vP).

For a signal \; = (d, [v°,...,v""1]) we will write A} to refer to the i-th element of
[v°, ..., 0" 1], which we refer to as its phase. See Fig. 9.1 for an example where k° = 1
and k! = 2.

9.4 Extending Phase Abstraction

In this section, we revisit and extend phase abstraction by defining it as a sequence of
preprocessing steps, as illustrated in Fig. 9.2. Differently from the approach in [223],
we present phase abstraction as part of a compositional framework, that handles a more
general class of periodic signals. As our approach subsumes temporal decomposition
adopted from the framework in [13], we first apply circuit forwarding [13] for duration
d (i.e., unrolling the reset states of a circuit by d steps) before unfolding is performed.
Fig. 9.2 illustrates the flow of phase abstraction. The process begins by using cube
simulation to identify a set of periodic signals as defined in Section 9.3 and computing
an optimal duration and phase number based on a selected cube lasso. Once the circuit is
unfolded n times, factoring is performed by assigning constant values to the clock-like
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Figure 9.3: An example of a forwarded (d = 1) and unfolded (n = 3) circuit. The
circles denote states in the original circuit (0 is the initial state). The rectangle are states
in the unfolded circuit.

signals as well as replacing latches with their equivalent or antivalent representative
latches in each phase. Next, the property is rewritten by applying structural rewriting
techniques and the circuit is further simplified using cone-of-influence reduction. Finally,
the simplified circuit (C),4+4 in Fig. 9.2) is checked using a base model checking approach
such as IC3/PDR [49] or continue to be preprocessed further.

In Fig. 9.3, we show intuitively an example of a circuit with 4-bit states representing
0,...,9 and so on, where the initial state is 0. After forwarding the circuit by one step
(d = 1), the initial state becomes 1. Subsequently with an unfolding of n = 3, every
state (marked with rectangles) in the unfolded circuit consists of three states from the
original circuit. We introduce the formal definitions below.

Unfolding a circuit simply means to copy the transition function multiple times to
compute n steps of the original circuit at once. Each copy of the transition function only
has to deal with a single phase and can therefore be optimized.

Definition 9.3 Unfolded circuit. Given a circuit C = (I, L, R, F, P) and a phase
number n € NT. The unfolded circuit C' = (I', L', R', F’, P') is:

. '=1vu.--urtr=1vu.---uL"1

2. R ={r]|lel'}:forl e L] =r;
fori € (0,n),1" € L*,r), = F(I', L' 1).

3. F'={f/|leL}:forl e L f = f;(1°, L™ 1);
for i S (0771)712 € Liafl/i = fli(Ii;Li_l).

4. PP = A P(Ii, Li).
1€[0,n)
We obtain a simplified circuit by replacing the periodic signals with constants and
equivalent/antivalent latches in the unfolded circuit.

Definition 9.4 Factor circuit. For a fixed duration d and phase number n, given a
d-forwarded and n-unfolded circuit C' = (I, L, R, F, P) and a periodic signal with
duration d and phase number n for each latch, the factor circuit C’ = (I, L, R', F', P)
is defined by:

R ={r]|leL}: F'={f/|leL}:
s =N, A € {L, Tk s fli=N, ifN e{L, Tk
. r;i:r)\;-,if)\%GL. . fl’i:fA;-,if)\feL.
o= _|T‘_\)\;',OtheI'WiSC. * fi=" fﬁ/\?,otherwise.
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Replaced latches will be removed by a combination of rewriting and cone-of-influence
reduction introduced in the following definitions. There are various rewriting techniques
also including SAT sweeping [57, 261-265].

Definition 9.5 Rewrite circuit. Given a circuit C' = (I, L, R, F, P), a rewrite circuit
C'=(I,L,R, F, P) satisfies P = P'.

For a given circuit, we apply cone-of-influence reduction to obtain a reduced circuit
such that latches and inputs outside the cone of influence are removed.

Definition 9.6 Reduced circuit. Given a circuit C = (I, L, R, F, P). The reduced
circuit C' = (I, L', R', F', P) is defined as follows:

» I' =1nNcoi(P); * L' = LN coi(P);

* RR={r|lel}; e F'={fi|lel},
where the cone of influence of the property coi(P) C (I U L) is defined as the smallest

set of inputs and latches such that vars(P) C coi(P) as well as vars(r;) C coi(P) and
vars(f;) C coi(P) for all latches [ € coi(P).

9.5 Certification

We define a revised certificate format that allows smaller and more optimized certificates.
We then propose a method for producing certificates for phase abstraction. The proofs
for our main theorems can be found in the Appendix.

9.5.1 Restricted simulation

In the following, we define a new variant of the stratified simulation relation [12], which
we call restricted simulation, that considers the intersection of latches shared between
two given circuits as a common component.

Definition 9.7 Restricted Simulation. Given stratified circuits C’ and C with C' =
(I')L',R,F',P')and C = (I, L, R, F, P). We say C’ simulates C under the restricted
simulation relation iff

1. Forle (LNL),r(I,L)=r/(I' L.
2. Forle (LN L), fi(l,L) = fi(I', ).
3. P(I',I') = P(I,L).

This new simulation relation differs from [12, 253], where inputs were required to be
identical in both circuits ( = I’), and latches in C' had to form a subset of latches in C’
(L C L'). Therefore, under those previous “combinational” [253] or “stratified” [12]
simulation relations the simulating circuit C’ cannot have fewer latches than L. This
is a feature we need for instance when incorporating certificates for cone-of-influence
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@ forward @ unfold @ factor @ rewrite reduce

bacl;yvard @ fold @ compose@

Figure 9.4: Certification for (extended) phase abstraction. Base model checking is
performed on circuit C),44, which produces a witness circuit W, 9, that certifies
Ch+2,Chys, and C)p 4. We construct step-wise to obtain W, which is a certificate for
the entire model checking procedure.

reduction [235], a common preprocessing technique. It opens up the possibility to
reduce certificate sizes substantially.

Still, as for stratified simulation, restricted simulation can be verified by three simple
SAT checks, i.e., separately for each of the three requirements in Def. 9.7.

Definition 9.8 Semantic independence. Let V) be a set of variables and v € V. Then a
formula f()) is said to be semantically independent of v iff

FW)o = FV)|--

Semantic dependency [266-269] allows us to assume that a formula only depends
on a subset of variables, which without loss of generality simplifies proofs used for
the rest of this section. The stratified assumption for reset functions entails no cyclic
dependencies thus R’(L') is satisfiable. A reset state in a circuit is simply a satisfying
assignment to the reset predicate R(L). Based on the reset condition (Def. 9.7.1), it is
however necessary to show that for every reset state in C' it can always be extended to a
reset state in C’, while the common variables have the same assignment in both circuits.
This is stated in the lemma below, and the proofs can be found in the Appendix.

Lemma9.9. LerC = (I,L,R,F,P)and C' = (I', L', R', F', P') be two stratified cir-
cuits satisfying the reset condition defined in Def. 9.7.1. Then R'(L N L') is semantically
dependent only on their common variables.

In fact, semantic independence is a direct consequence of restricted simulation; thus
no separate check is required. We make a further remark that if the reset function is
dependent on an input variable, then it has to be an input variable common to both
circuits.

Based on this, we conclude with the main theorem for restricted simulation such that
C is safe if C’ is safe (i.e., no bad state that violates the property is reachable from any
initial state).

Theorem 9.10. Let C = (I,L,R,F,P)and C' = (I', L', R', F', P') be two stratified
circuits, where C' simulates C under restricted simulation.
If C" is safe, then C is also safe.
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Intuitively, if there is an unsafe trace in C', Def. 9.7.1 together with Lemma 9.9 allow
us to find a simulating reset state and transition it with Def. 9.7.2 to a simulating state
also violating the property in C’ by Def. 9.7.3. Here a state in C’ simulates a state in C'
if they match on all common variables. Building on this, we present witness circuits
as a format for certificates. Verifying the restricted simulation relation requires three
SAT checks, and another three SAT checks are needed for validating the inductive
invariant [253]. Therefore certification requires in total six SAT checks as well as a
polynomial time check for reset stratification.

Definition 9.11 Witness circuit. Let C' = (I, L, R, F, P) be a stratified circuit. A
witness circuit W = (J, M, S, G, Q) of C satisfies the following:

¢ W simulates C' under the restricted simulation relation.
¢ () is an inductive invariant in W

The witness circuit format subsumes [12, 13], thus every witness circuit in their
format is also valid under Def. 9.11.

9.5.2 Certifying Phase Abstraction

The certificate format is generic, subsumes [13], and is designed to potentially be used as
a standard in future hardware model checking competitions. We proceed to demonstrate
how a certificate can be constructed for a model checking pipeline that includes phase
abstraction. The theorems in this section state that this construction guarantees that a
certificate will be produced. We illustrate our certification pipeline in Fig. 9.4. After
phase abstraction and base model checking, we can build a certificate backwards based
on the certificate produced by the base model checker. The following theorem states
that the witness circuit of the reduced circuit serves as a witness circuit for the original
circuit too.

Theorem 9.12. Given a circuit C = (I, L, R, F, P) and its reduced circuit C' =
(I')L',R', F', P"). A witness circuit of C" is also a witness circuit of C.

The outcome of rewriting is a circuit with a simplified property that maintains semantic
equivalence with the original property. Therefore in our framework, the certificate for the
simplified property is also valid for the original property. Furthermore, certificates can
be optimized by rewriting at any stage. We summarize this in the following proposition.

Proposition 9.13. Given a circuit C and its rewrite circuit C'. A witness circuit of C' is
also a witness circuit of C.

We define the composite witness circuit to combine the certificates for cube simulation
and the factor circuit.

Definition 9.14 Composite witness circuit. Given a stratified circuit C' = (I, L, R, F,, P)
and its factor circuit C' = (I', L', R', F’, P'), and the unfolded loop invariant ¢ =
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Figure 9.5: Every fully initialized state of a 3-folded witness circuit contains 3 original
states that form an unfolded state. Two consecutive 3-folded states contain either the
same unfolded states or two states consecutive in the unfolded circuit.

Vieo,m) Njelo,n) Cisntj+ds Withm = (8 +w — d + 1) /n, obtained from the cube lasso.
Let W/ = (J',M',S",G', Q') be a witness circuit of C’. The composite witness circuit
W =(J,M,S,G,Q) is defined as follows:
1. J=1UJ.
2. M =LU(M\L.
3. S={s |l e M}:
a) forl € L,s; =1y
— / !/ /
b) forl € M\L', s = s. 5. Q@=0(L) AQ(T, M),

4. G={g |l e M}:
a) forl € L,g1 = fi;

b) forl € M'\L', g; = g].

Theorem 9.15. Given circuit C = (I, L, R, F, P), and factor circuit C' = (I', L,
R,F' P). Lee W = (J,M' S G Q) be a witness circuit of C', and W =
(J, M, S, G, Q) constructed as in Def. 9.14. Then W is a witness circuit of C.

In the construction of an n-folded witness circuit from the unfolded witness W, a
single instance of TW'’s latches (IV), yet multiples of the original latches L are used. As
illustrated in Fig 9.5, these L record a history, contrasting with their role in the unfolded
circuit where they calculate multi-step transitions.

Definition 9.16 n-folded witness circuit. Given a circuit C = (I, L, R, F, P) with a
phase number n € N*, and its unfolded circuit ¢’ = (I', L', R, F', P"). Let W' =
(J',M',S",G’', Q') be the witness circuit of C’. The n-folded witness circuit W =
(J,M,S,G, Q) is defined as follows:

1. J=1°UJY where I° and J° are I and J respectively.

2 M =11 I"ULO - LM UNUJLU (B0 b7 0 en 2,
where m =2 xn —2, N = M’ \ L/, and I*, L are copies of I and L, and J' is
a copy of J'.
3. S={s;|l e M}:
a) sp = T;
b) Fori € (0,m], sy = L.
¢) Fori € [0,n—1),s. = L.
d) Forl e L% s =1].
e) Forlc (I'--- I UL'---L™UJY), s =1.
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f) Forl € N,s; = s.

4. G={g |l e M}:
a) gy = T.
b) Fori € [1,m], gy = b~ L.
) geo = bt A —en 2,
d) Fori€ [l,n—1),g.: = et A e 2,
e) Forl e LY, g, = fi.
f) Forl' € J', gpn =1°.
g) Fori € [1,m],I* € (I'ULY), g =11
h) Forl € N,
g = ite(e" 2, gj(JL, M (rm L gL Dy N .
5.Q0= A ¢:
1€[0,6]
a) ¢ = P(I° LY).
b) ¢ = 0.
o @?= A @ —=bh.
1€[1,m]

d¢@= A (b= (L ~FIL7)).
1€[1,m]

e) ¢*= A ((=b'ABTH) = (R(L7TY) A S'(N))).
i1,m]

De=v"=>(CV (AN ~DHACA

icl0n)  j€lin—1) j€[0,3)
Q(J°, M n(L--- UL LU N))).
9¢= A (=€)
i€[1,n—2]
¢ = A (&=
1€[0,n—2]
)@= A ((=b" AT — €.
1€[0,n—2)

The b's are used for encoding initialization. So that inductiveness is ensured when
not all copies are initialized. The n — 1 bits e’ are used to determine which set of n
consecutive original states form an unfolded state (a state in the unfolded circuit). This
information is used to determine on which copies the unfolded property needs to hold
and to transition the latches in NV (the part of the witness circuit added by the backend
model checker) once every n steps.
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Figure 9.6: A concrete example of the model checking and certification pipeline. The
original circuit has two latches; the bottom latch alternates and the top copies the
previous value of this clock. The property is that at least one bit is unset. Bad states
are marked gray. After unfolding with phase number two, the size of the state space is
squared. Since the bottom bit is periodic, we can replace it with a constant in each phase
(factor). On this circuit terminal model checking is performed, since the property is
already inductive (no transition from good to bad), the circuit serves as its own witness.
To produce the final witness circuit, the clock is added back as a latch, and the property
is extended with the loop invariant asserting that the clock has the correct value for each
phase. Lastly, the circuit is folded to match the speed of the original circuit. Three
initialization bits b are introduced and one additional bit e” that determines which pair
of consecutive states need to fulfill the property (0 for the right pair and 1 for the left).
This check is only part of the property once full initialization is reached. For this final
witness circuit, only the good states are depicted. Also, the first two states represent sets
of good states with the same behavior.

Theorem 9.17. Given a circuit C = (I, L, R, F, P) with a phase number n € N, its
unfolded cicuit C' = (I', L', R', F', P") with a witness circuit W' = (J', M",S", G, Q").
Let W = (J, M, S, G, Q) be the circuit constructed as in Def. 9.16. Then W is a witness
circuit of C.

After the witness circuit has been folded, the same construction from [13] can be
used to construct the backward witness. With that, the pipeline outlined in Fig. 9.4 is
completed. If phase abstraction is the first technique applied by the model checker, a
final witness is obtained. Otherwise, further witness processing steps still need to be
performed.
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9.6 Implementation

In this section, we present MC2, a certifying model checker implementing phase abstrac-
tion and IC3. We implement our own IC3 since no existing model checker supports reset
functions or produces certificates in the desired format. We used fuzzing to increase trust
in our tool. The version of MC2 used for the evaluation, was tested on over 25 million
randomly generated circuits [51] in combination with random parameter configurations.
All produced certificates where verified.

To extract periodic signals we perform ternary simulation [228] while using a forward-
subsumption algorithm based on a one-watch-literal data structure [123] to identify
supersets of previously visited cubes, and thereby a set of cube lassos. For each cube
lasso we consider every factor of the loop length w as a phase number candidate n. We
also consider every duration d, that renders the leftover tail length (§ — d) divisible by n.
To keep the circuit sizes manageable, we limit both 7 and d to a maximum of 8. We call
each pair (d, n) an unfolding candidate and compute the corresponding periodic signal
(Def. 9.2) for each latch.

For each phase, equivalences are identified by inserting a bit string corresponding to
the signs of each latch into a hash table. After identifying the signals, forwarding and
unfolding are performed on a copy of the circuit, followed by rudimentary rewriting.
Currently the rewriting does not include structural hashing and is mostly limited to
constant propagation. Afterwards a sequential cone-of-influence analysis starting from
the property is performed. After performing these steps for each candidate, we pick the
duration-phase pair that yields a circuit with the fewest latches and give it to a backend
model checker.

We evaluated the preprocessor on three backend model checkers: the open-source
k-induction-based model checker McAiger [270](Kind in the following), the state-of-
the-art IC3 implementation in ABC [177] and our own version of IC3 that supports reset
functions and produces certificates. Since ABC does not support reset functions, it is not
able to model check any forwarded circuit (note that implementing this feature on ABC
is also a non-trivial task), therefore for this configuration we only ran phase abstraction
without forwarding thus no temporal decomposition.

Our IC3 implementation on MC2 does feature cube minimization via ternary simula-
tion [224], however it is missing proof-obligation rescheduling. In fact, we currently
use a simple stack of proof obligations as opposed to a priority queue. Despite using
one SAT solver instance per frame, we also do not feature cones-on-demand, but instead
always translate the entire circuit using Tseitin [36].

Lastly, we also modified the open source implementation of Certifaiger [271] to
support certificates based on restricted simulation. For a witness circuit C’ of C, the new
certificate checker encodes the following six checks as combinatorial AIGER circuits
and then uses the aigtocnf to translate them to SAT:

@ The property of C’ holds in all initial states.

The property of C’ implies the property for successor states.
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Figure 9.7: Comparison of model checking performance. We compare four pairs of
configurations; the three backend engines with and without phase abstraction (with
fixed duration 0) and for Kind we present the effect of additionally allowing forwarding.
The size of the markers represents n + d. The dots represent instances where the
preprocessing heuristic decided not to alter the circuit. The red lines mark the timeout of
5000 seconds. Markers beyond that line represent instances solved by one configuration
but not the other.

@ The property of C’ holds in all good states.
@ The reset functions of common latches are equivalent. (Def. 9.7. 1)
@ The transition functions of common latches are equivalent. (Def. 9.7. 2)

@ The property of C’ implies the property of C. (Def. 9.7. 3)

The first three checks are unchanged and encode the standard check for P’ being an
inductive invariant in C’. Since P’ is both the inductive invariant and the property we
are checking, @ can technically be omitted. However, in our implementation, the
inductiveness checker is an independent component from the simulation checker and
would also works for scenarios where the inductive invariant is a strengthening of the
property in C".

9.7 Experimental Evaluation
This section presents experimental results for evaluating the impact of preprocessing

on the different backends, as well as the effectiveness of our proposed certification
approach. The experiments were run in parallel on a cluster of 32 nodes. Each node was
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Model ABC Our IC3 Kind

Safe m d n PA PA Full PA Full
Solved 740 745 715 715 604 533 538 544
PAR2 996 941 1357 1351 2699 3533 3472 3399
abp4p2ff v 11 1 1.12 1.08 6.35 6.23 6.18 2.50 2.50
bjrb07 3 0 3 0.12 0.10 0.11 0.03 0.07 0.03 0.04
nusmvb5p2 5 0 5 0.12  0.10 0.01 0.01 0.01 0.01 0.01
nusmvb10p2 5 0 5 022 0.13 0.10 0.03 0.04 0.02 0.02
prodcell0 v 1 5 8 2697 27.07 22846 243.73 49.76 2.37
prodcelloneg v 1 5 8 1636 1593  230.57 230.67 36.62 2.39
prodcelll v 1 7 8 2345 2338 65421 665.86 59.67 443
prodcelllneg v 1 7 8 2836 2833 68l.11 738.61 61.74 4.48
prodcell2 v 1 7 8 2498 2458 661.71 663.37 56.74 443
prodcell2Zneg v 1 7 8 2023 2028 77839  768.75 56.14 4.47
bc57senOneg v 1 1 1 503.61 49455 910.72  906.87 1760.41 830.92
abp4ptimo v 1 11 414 413 28.93 2991 6.32 608.55
boblivea 1 2 1 370 3.68 7.85
bobsm5378d2 1 8 1 4.04 4.12 88.36
bobsmnut1 8 5 8 10.95 40.08 2504.07
prodcell3neg v 2 2 8  27.88 10.86 310.22 837.43 2.73
prodcelldneg v 2 2 8 4431 990 404.12 26.04 2.77
prodcell3 v 2 2 8 2345 1124 32023 1103.29 19.22 2.48
prodcell4 v 2 2 8 3140 10.08 398.83 29.71 18.67 2.68
pdtvisvsar29 1 2 5 1523.73 0.36 0.29 0.40
intel042 v 1 3 2 3876.04 4061.38
intel022 2 2 2 1852.29
intel021 2 2 2 2752.86 651.56
intel023 2 2 2 2257.94 3728.38
intel029 2 2 2 2550.14 3437.64
intel024 2 2 2 167.96 676.64 4526.60
intel019 2 2 2 2716.40

Table 9.1: We presents the effect of preprocessing in combination with different backend
engines on model checking time. We compare no preprocessing to only phase abstraction
without forwarding (PA) and full preprocessing (Full). Note that, ABC does not support
reset functions and can therefore not be combined with full preprocessing. For each
model we present the phase number without forwarding 7 for PA and the duration d and
phase number n corresponding to Full. Models where the property holds are marked as
safe. The first two rows present the number of solved instances and the PAR?2 score [14]
over all 818 benchmarks. The table shows all instances where preprocessing had either
a positive or negative impact on model checking success, with the exception of those
instances rendered unsolvable for our IC3 implementation by forwarding.

equipped with two 8-core Intel Xeon E5-2620 v4 CPUs running at 2.10 GHz and 128
GB of main memory. We allocated 8 instances to each node, with a timeout of 5000
seconds for model checking and 10 000 seconds for certificate checking. Memory is
limit to 8 GB per instance in both cases.

The benchmarks are obtained from HWMCC2010 [272] which contains a good
number of industrial problems. As we observe from the experiments in general, prepos-
sessing is usually fast. Ignoring one outlier in our benchmark set, it completes within
an average of 0.07 seconds and evaluates no more than 17 unfolding candidates per
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Figure 9.8: Certification vs. model checking time for three configurations of our IC3
engine. The legend shows the cumulative overhead of including certification for all
solved instances. The size of the markers represents n + d. The dots represent instances
where preprocessing did not alter the circuit.

benchmark. Interestingly, for the outlier “bobsmnut1”, 3019 unfoldings are computed
for 179 different cube lassos within 34 seconds.

Table 9.1 presents the effect of our preprocessing on different backends, further
illustrated in Fig 9.7. Our preprocessor was able to improve the performance of the
sophisticated IC3/PDR implementation in ABC, allowing us to solve five more instances,
all from the intel family. For each benchmark from this family, our heuristic computed an
optimal phase number of 2. A likely explanation for this is that the real-world industrial
designs tend to contain strict two-phase clocks [255]. The positive effect of phase
abstraction is also clear in combination with the k-induction (Kind) backend. Circuit
forwarding provides a further improvement, that is especially notable on the prodcell
benchmarks. These also illustrate how forwarding enables more successful unfolding.
Without forwarding, preprocessing only unfolds 61 out of the 818 benchmarks with an
average phase number of 2, with forwarding 152 circuits are unfolded with an average
phase number of 4.

Even though our prototype implementation of IC3 is missing a number of important
features present in ABC, it still solves a large number of benchmarks. However, as
opposed to ABC it does lose a number of benchmarks with phase abstraction. This can
be explained by the lack of sophisticated rewriting that can exploit the unfolded circuits
structure. The addition of forwarding is highly detrimental to performance, losing 115
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instances. This is due to our implementation following the PDR design outlined in [224].
It requires any blocked cube not to intersect the initial states after generalization. If only
a single reset state exists this check is linear in the size of the cube. However, in the
presence of reset functions it is implemented with a SAT call. While also slower the
main problem however is that the reset-intersection check is also more likely to block
generalization. On the 115 lost benchmarks generalization failed 96% of the time, while
it only failed in 1.8% of the cases without forwarding. We keep the optimization of our
IC3 implementation in the presence of reset functions for future work.

Fig. 9.8 displays certification results on MC2 in comparison to model checking time.
IC3 provides certificates that are easily verifiable, as confirmed by our experiments
with cumulative overhead of only 3%. The addition of phase abstraction (i.e., including
constructing n-folded witnesses as in Fig. 9.4, without witness back-warding) does not
bring significant additional overhead. When forwarding is allowed, the certification
overhead increases to 10%. The run time of certificates generation and encoding to
SAT is negligible for all configurations. The certification time is dominated by the SAT
solving time for the transition (Def. 9.7.2) and consecution check. Overall, this is a
significant improvement over related work from [13] which reported 1154% overhead
on the same set of benchmarks using a k-induction engine as the backend.

9.8 Conclusion

In this paper, we present a certificate format that can be effectively validated by an
independent certificate checker. We demonstrate its versatility by applying it to an
extended version of phase abstraction, which we introduce as one of the contributions
of this paper. We have implemented the proposed approach on a new certifying model
checker MC2. The experimental results on HWMCC instances show that our approach
is effective and yields very small certification overhead, as a vast improvement over
related work. Our certificate format allows for smaller certificates and is designed to be
possibly used in hardware model checking competitions as a standardized format.

Beyond increasing trust in model checking, certificates can be utilized in many
other scenarios. For instance, such certificates will allow the use of model checkers as
additional hammers in interactive theorem provers such as Isabelle [273] via Sledge-
hammer [274], with the potential of significantly reducing the effort needed for using
theorem provers in domains where model checking is essential, such as formal hardware
verification, our main application of interest. Currently in Isabelle, Sledgehammer
allows to encode the current goal for automatic theorem provers or SMT solvers and
then call one of many tools to solve the problem. The tool then provides a certificate
which is lifted to a proof that can be replayed in Isabelle. We plan to add our model
checker as an additional hammer to increase the automatic proof capability of Isabelle.
This further motivates us to investigate certificate trimming via SAT proofs.
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9.9 Appendix

This Appendix first provides two observations relating witness circuits under the new
restricted simulation relation to the stratified simulation relation introduced in previous
work [12]. The next section provides formal proofs for the correctness of Theorem 9.10
and thereby the formal basis of our certification approach based on restricted simulation.
The final section formally proves the completeness of the witness circuit construction
for phase abstraction.

9.9.1 Comparison: Stratified and Restricted Simulation

Previous work [12] introduced a more restricted form of simulation relation. The
following two propositions show that the new format subsumes this work, and all
previously introduced techniques for witness circuit construction can still be applied.

Proposition 9.18. Given circuits C = (I,L,R,F,P) and C' = (I',L',R', F', P),
both stratified. If C' simulates C' under the stratified simulation relation [13], then C’
also simulates C' under the restricted simulation.

Proposition 9.19. Given a circuit C = (I, L, R, F, P) and its stratified k-witness
circuit C" = (I' L', R, F', P') as defined in [12]. Then C" is a witness circuit of C
according to Definition 9.11.

9.9.2 Correctness: Restricted-Simulation-Based Witnesses

The main claim for the correctness of our certification approach is given in Theorem 9.10.
The formal proof of this theorem is split over the following lemmas relating to the reset,
transition and property aspects of Def. 9.7. The first of these lemmas is presented in the
main paper, and restated here for completeness.

Lemma 9.20. Let C = (I,L,R,F,P) and C' = (I',L',R', F', P') be two strati-
fied circuits satisfying the reset condition defined in Def. 9.7.1. Then R'(L N L') is
semantically dependent only on their common variables.

Proof. We provide a proof by contradiction. Given a latch [, € (L’ \ L) and a latch
Iy € (LN L"), suppose that ry, (I', L')|1, # 7y, (I'; L')|~i, which entails that r; (I, L')
is dependent on l,. Since l, € (L' \ L), we have |, ¢ L. Based on this, we have
r, (I, L), = ri,(I,L)|~, since [, is not a variable in C. Let s be a satisfying as-
signment to r;, (I, L)|;, as well as r;, (I, L)|~;,. By the reset condition 7, (I, L) =
r;,(I'; L"), the same assignment s satisfies r;, (I, L')[;, and r;, (I, L')|~,. Then we
have 7 (I', L"), = 7, (I, L')|~,, which contradicts the fact that r; (I', L"), #
7;,(I'; L")|~,. The same argument can be applied to the inputs. Therefore, every
r)(I', L") for I € (L N L’) is dependent only on common variables (L N L") U (I N I").

Since R(LN L") isdefinedas A [ ~r/(I’, L), the same follows. O
le(LNL)

96



Lemma 9.21. Given two stratified circuits C = (I, L, R, F, P) and C' = (I', L', R/,
F', P') that satisfy Def. 9.7.1. For every reset state in C, there is a reset state in C' with
the same assignments to L N L.

Proof. Let s be a satisfying assignment to R(L). Under the reset condition r;(I, L) =
ry(I',L") for | € (L N L), the same assignment satisfies R'(L N L’). Since the reset
functions of L N L’ can be assumed to not have dependencies on other latches L' \ L
according to Lemma 9.9, and the rest of R'(L’) (i.e., R'(L’' \ L)) is also stratified, we
can assume a topological ordering of the dependency graph where all latches in L' \ L
come before L N L’. We can therefore assign values to the rest of the latches L' \ L by
traversing in reverse order. O

That is a reset state in C' can always be extended to a reset state in C” and similar
arguments can be applied to transitions from current to next state:

Lemma 9.22. Given two stratified circuits C = (I, L, R, F, P) and C' = (I', L', R,
F', P') that satisfy the transition condition (Def. 9.7). Then f[(I', L) foralll € (LNL')
semantically only depend on latches in L N L'

Proof. The proof follows the same logic as that of Lemma 9.9. O

Lemma 9.23. Given two stratified circuits C = (I, L, R, F,P) and C' = (I', L', R,
F', P) that satisfy the transition condition (Def. 9.7.2). Let u be a state in C and u'
a state in C' such that the common variables are assigned to the same values in both
w and v'. Then for every successor of u, there is a successor state of v’ with the same
assignments to L N L.

Proof. First of all, let s be a satisfying assignment to U; (i.e., L1 ~ F(Ip, Lg)). We
construct a satisfying assignment s to U] by first applying the same variable assignment
to Lo N Ly in C’ (as well as Iy N Ij) and extend it to an assignment of I U Ly,.
Since I3 ~ fi(ly, Lo) for all | € Ly, and the transition condition holds, by Def. 2,
L ~ f](I}, L) for all I € (L N L"). Therefore, together with Lemma 9.22, we can
keep the same variable assignment to L; N L} in s’. The rest of the variables L} \ L
have their transition functions solely depend on variables from I{) and L{, therefore s’ is

guaranteed to be satisfiable.
O

Theorem 9.24. Let C = (I, L, R, F,P)and C' = (I', L', R', F', P") be two stratified
circuits, where C' simulates C under restricted simulation.
If C' is safe, then C'is also safe.

Proof. We assume C” is safe, and provide a proof by contradiction by assuming C'is not
safe. Suppose there is an assignment s over I U L satisfying R(Lo) AU, A= P (I, Li).
By Lemma 9.21, the same assignment of R(Lg N L{,) can be extended to satisfy R'(Lj).
Furthermore, by Lemma 9.23, we can construct a satisfying assignment for R'(L{) AU},
such that the common latches are always assigned the same values as according to s.
Thus, by assumption that C” is safe, P'(I],, L") follows which together with Def. 9.7.3
results in a contradiction. O
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9.9.3 Completeness: Phase Abstraction Witness Construction

The presented witness circuit construction for phase abstraction will always produce a
valid witness circuit. This claim is presented for each step of the construction in Theo-
rem 9.12, 9.15, and 9.17. The proofs are presented in the following. For Theorem 9.15,
the definition of unfolded loop invariant is restated in greater detail.

Theorem 9.25. Given a circuit C = (I, L, R, F, P) and its reduced circuit C' =
(I',L',R', F', P"). A witness circuit of C' is also a witness circuit of C.

Proof. Let W' = (J',M',S",G', Q") be a witness circuit of C’. First of all, we show
that W' simulates C. As L' C L, K = L' N M’ is also the common set of latches
between C' and W’. The resets of C remain stratified. As the reset functions and
transition functions of K stay the same, together with Def. 9.6 where P’ = P, the three
checks in Def. 9.7 are satisfied. We conclude W’ simulates C. By Def. 9.11, Q’ is an
inductive invariant. Thus W’ is also a witness circuit of C. [

Definition 9.26 Unfolded cube lasso. Given a circuit C' = (I, L, R, F, P) with a phase
number n € N, and its unfolded circuit ' = (I', L', R', F', P').

Let cg, -~ ,cq, -+ ,Cs,-++ ,C54w De the cube lasso of C'. The unfolded cube lasso
Cos " 5 Cois e+, Cyryyy 18 defined as follows: () &' xn +d = 6w *n+n—1=w.
(i) Fori € [0,8' +w'),¢; = A Ciunyjrall], L]).

Jj€lo,n)

Definition 9.27 Unfolded loop invariant. Given a circuit C = (I, L, R, F, P) and
its unfolded circuit C' = (I', L', R', F', P'), and a cube lasso cg,- - , ¢, of C. Let

o, - - -» €,y be the unfolded cube lasso.
The unfolded loop invariant ¢ is defined as \/  ¢,.

1€[0,m’]
Lemma 9.28. The unfolded cube lasso is a cube lasso in the unfolded circuit.

Lemma 9.29. Given a circuit C = (I, L, R, F, P) and its unfolded circuit C' =
(I',L,R',F', P') with a phase number n. Let ' C L be a set of latches that are
associated with periodic signals determined from a cube lasso cy, . . ., 54, of C. The
unfolded loop invariant ¢ is an inductive invariant in the circuit C' for the property
ANC A (= )D), wherel' is a temporal copy of L.

lel’ i€[0,n]

In the above lemma, the property states in essence that the periodic signals always
have the values according to their periodic patterns in the unfolded cube lasso. Each
cube in the unfolded cube lasso is a partial assignment to L', which consists of n copies
of the original set of latches L. Therefore we use temporal copies such as /\§ to represent
the periodic values of the latches.

Theorem 9.30. Given circuit C = (I, L, R, F, P), and factor circuit C' = (I', L/,
R F'P). Let W = (J,M',S',G',Q") be a witness circuit of C', and W =
(J, M, S, G, Q) constructed as in Def. 9.14. Then W is a witness circuit of C.
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Proof. First of all we show the composite witness W simulates C. W' and C are
stratified and R only references latches in L; thus no new cyclic dependencies is
introduced. Therefore W is stratified too. L is the common set of latches for W and C.
By Def. 9.4, the reset and transition functions of L are the same in both circuits, this
satisfies the reset check as well as the transition check. Since W' is a witness circuit of
C’, we have Q" = P’ and therefore Q = P’. We omit the rest of the proof as it follows
the same logic as Theorem 2 in [13]. O

Theorem 9.31. Given a circuit C = (I, L, R, F, P) with a phase number n € N, its
unfolded cicuit C' = (I', L', R', F', P") with a witness circuit W' = (J', M', S, G, Q").
Let W = (J, M, S, G, Q) be the circuit constructed as in Def. 9.16. Then W is a witness
circuit of C.

Proof. First, we prove the simulation relation. The L° latches have the same reset
functions as in C, thus they are stratified, and they do not have dependencies on other
latches outside L. The resets of IV are the same as in W/’ thus also stratified. Based on
Def 9.16, the rest of the latches do not depend on other latches therefore S is stratified.
Let K = L N M. By Def. 9.16, for [ € I9 s = r{. Together with Def. 9.3, we have
R(K) = S(K). By Def. 9.16, f; = g; for | € K. Also by ¢°, we have Q = P.
Therefore, W simulates C.

Next we show that the BMC check passes for W such that S(M) = Q(J, M).
Since only b° is set at reset, ¢', ¢%, ¢> and ¢° are satisfied. All e’s are set to L at reset,
thus ¢°, ", ¢® are also satisfied. The reset in Def. 9.16 directly implies R'(L°) and
S'(N), and by Def. 9.3 it also satisfies R(L"), which satisfies ¢*. Based on Def. 9.7,
R'(LY) = S'(M' N L), which together with the stratification of S’, results in S’ (M").
This implies Q'(J’, M), based on the BMC check of the inductive invariant Q)'. By
Def. 9.7, we have P'(I’, L), and based on Def. 9.3 this gives us P(I°, L) thus ¢° is
also satisfied.

Let V1 be the unrolling of W and we move on to prove Vi AQ(Jo, My) = Q(J1, M)
by providing a proof by contradiction. We assume Vi A Q(Jo, Moy) A —~Q(J1, M) has
a satisfying assignment, and fix this assignment. We consider two cases based on the
values of b: (i) all b}, are set to T; (ii) By is partially initialised, i.e., not all bg set to
T. We begin with the first case. Since b’s always transition to T or *~!, and under the
assumption that all b's are T, ¢}, ¢?, ¢} and ¢] are immediately satisfied. By Def. 9.16,
LY transitions in the same way as in C, and the rest of the latches are simply copying the
values during the transition, thus g3 is satisfied. We move on to consider ¢7. Based on
qg, we get a satisfying assignment for  \/ (( A —e)A( A &)AQ'(J°, M'N

i€[0,n) jE€[i,n—1) j€[0,7)
(Lt---UL™"=1 U N)). We thus consider three different cases based on the disjunction
and the value of e}s.

¢ Case where all ef)s are 1_: based on Def. 9.16, e(l) is set to T and the rest set to L,
thus ¢%, ¢§ are satisfied. Since 68_2 is set to L, the latches of N stay the same after
the transition. In this case, we already have Q'(JS, M} N (LY --- U LI~ U Ny))
satisfied, together with the transition function defined and ¢3, the same assignment
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satisfies (A —el) AeQ AQ/(JY, M] N (L UL} U Ny)), which satisfies ¢5.
j€[l,n—1)

By Def. 9.7, we have P'(I{, L) which also implies P(I{, LY). Therefore ¢ is

also satisfied.

Case where not all €}, set to T: let k be the index such that 0 < k < n—2, e} ~ T
for i € [0,k] and e}, ~ | fori € (k,n — 2], and after the transition ¢! ~ T for
i €10,k+1]and et ~ 1 fori € [k + 2,n — 2], which immediately satisfies ¢}
and ¢§. Based on ¢j, we already have Q’'(J§, M, N (LETY .- U LE™ U Np)).
Similarly as the case above, ef 2 is L thus the rest follows.

Case where all e}s are T: based on Def. 9.16, all e}s become _L, thus ¢} and ¢
satisfied. As stated in Def. 9.16, when eg = T, latches in N transition as in W'.
In this case, based on ¢f, we already have Q' (J&, My N (L~ ---ULA" "2 U Np))
satisfied, together with the transition function defined and qg, the same assignment
satisfies Q'(JY, M{ N (LY U L?~1 U Ny)), which satisfies ¢}. By Def. 9.7, we
have P'(I}, L) which implies P(I}, LY). Therefore p\ is satisfied.

In either case, we can apply the same assignment to satisfy Q(Jq, M) and therefore
reach a contradiction. The rest of the proof follows similar logic. O
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Abstract Model checking is a powerful automated reasoning technique for verifying
hardware designs, ensuring that they function correctly before deployment. However,
modern model checkers are complex software systems with hundreds of thousands of
lines of code, making them prone to errors. To increase confidence in verification results,
recent efforts in hardware verification focus on requiring model checkers to produce
machine-checkable proofs according to a standardized format that can be independently
validated. Yet, implementing proof generation across different verification algorithms
presents a unique challenge.

One critical aspect of hardware model checking is handling constraints—assumptions
about the system’s environment that help simplify analysis, improve performance, and
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extend the applicability of verification techniques. Like most industrial verification
languages, the AIGER format, used in hardware model checking competitions, explicitly
supports constraints. This paper addresses the challenge by developing a certification
approach that ensures verification results remain trustworthy when constraints are
present. We introduce certificate generation methods for three classes of constraints
that can be extracted from the models. Furthermore, to support a broader range of
constraints and more complex reset logic for industrial use, we also provide alternative
Quantified Boolean Formula checks for a standardized proof format with a single
quantifier alternation. Additionally, we extend this framework by incorporating k-
induction with uniqueness constraints. We implement these techniques in a certification
toolkit, and provide empirical evaluation on competition benchmarks, demonstrating
their effectiveness.

10.1 Introduction

Model checking is a widely used technique in formal verification to ensure that hardware
designs, such as processors or circuits, operate correctly before they are manufactured.
This automated process checks whether a design in the form of a gate-level netlist
satisfies specific requirements—often expressed as logical properties—by exploring all
possible executions of the system. However, the automated reasoning tools that perform
model checking, known as model checkers, are complex, consisting of hundreds of
thousands of lines of code. This complexity introduces the risk of errors within the tools
themselves, raising questions about the reliability of their results. To address this, recent
developments in hardware verification emphasize the generation of certificates—formal
proofs that can be independently verified by another program to confirm the verdicts of
the model checkers [237, 243, 246, 253, 275].

As in most industrial verification languages [276, 277], following the assume-
guarantee methodology [278], an essential feature of hardware model checking is
the use of constraints, which represent assumptions about the environment in which the
hardware operates. These assumptions simplify the verification task, improve computa-
tional efficiency, and allow model checking to tackle more complex designs. The AIGER
format [51], a standard in hardware model checking competitions (HWMCCs) [21],
explicitly incorporates constraints as part of its benchmark specifications. In the latest
iteration, HWMCC’24, certification became mandatory: all participating model checkers
had to produce a machine-checkable certificate when confirming a design’s correctness.
The verification pipeline is illustrated in Fig. 10.1.

The standardized certificate format [11], in the form of a witness circuit, relies on
five simple satisfiability (SAT) checks and a polynomial-time check for reset function
acyclicity (called stratification). This approach is efficient and compatible with many
model checking algorithms. However, challenges arise when designs include complex
reset logic—such as cyclic dependencies—which complicates certificate generation, but
are common in industrial practice [279-281]. To overcome this, we propose alternative
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Figure 10.1: Overview of the model checking certification process. The generated
certificates are independently validated by a certificate checker using five simple SAT
checks and a polynomial-time check on stratification.

checks using Quantified Boolean Formula (QBF) in the same format. This relaxed
format is easily adapted by the certificate checker CERTIFAIGER used in HWMCC 24,
offers more flexibility for model checker developers while maintaining trust in the
results.

Since commercial designs often require hundreds of constraints to accurately model
their environments, verification tools must go beyond the explicit constraints provided
in the design description. Hidden constraints can often be inferred from the model
itself [282, 283]. In fact, such constraint extraction is also implemented in the state-of-
the-art model checker ABC [177], as documented in its official manual. Complementary
efforts have also focused on the efficient synthesis of such constraints [284, 285]. These
constraints, identified through preprocessing, refine the verification problem by focusing
only on parts of system states, preserving the validity of the original property. While
this simplification enhances efficiency, the resulting certificate from the model checker
applies only to the reduced model, not the original. This therefore adds difficulty for
certification.

Our contribution. This paper addresses this gap by demonstrating how to generate a
certificate that validates the original design, accounting for the extracted constraints.
Furthermore, we consider k-induction [35], a powerful model checking method that
proves properties by examining inductive behaviours. This technique often employs
uniqueness constraints (sometimes also called simple path constraints) to ensure that
states in the induction step do not repeat, making it a complete verification approach.
Certifying k-induction with such constraints has been challenging [12], but we present
a solution using QBF-based checks as well as a method to generate corresponding
certificates.
We summarize our main contributions as follows.

1. Certification of extracted constraints. We introduce a method for generating cer-
tificates that account for three classes of extracted constraints: model constraints,
inductive constraints, and property constraints. The resulting certificates validate
that the verification result holds for the original model, prior to preprocessing.
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2. Relaxed certificate format. To accommodate more complex encoding logic in
modern model checking techniques, we propose alternative QBF-based certificate
checks. These relaxations extend the standardized certificate format used in
hardware model checking competitions and remain verifiable by an independent
checker.

3. Certification of uniqueness constraints in k-induction. We present a generalized
certification approach by extending the certificate format with the notion of
oracles, enabling certification of uniqueness constraints.

4. Empirical evaluation. We evaluate our approach on a set of HWMCC benchmarks,
demonstrating its practicality and effectiveness.

10.2 Constrained circuits

In the rest of the paper, we employ the following notation: let V be a set of Boolean
variables, we consider formulas over V with the Boolean operators —, \V, A, —, <>. The
last denotes equivalence and can have an infix negation <4. A (partial) assignment gives
each variable in (a subset of) V the value true(T) or false(_L). Applying a function f to
an assignment s, denoted as f(s), follows the usual semantics. If s is a total assignment,
f(s) yields a truth value; if s is partial, f(s) results in a formula not dependent on any
variables in s. By dependent we mean syntactically dependent, i.e. no variable v in s
appears in f(s). For a partial assignment, we use extension to refer to an assignment
that assigns more variables and is otherwise the same. For sets of Boolean variables
U and V, we denote union as U,V and as U UV when we want to emphasize that I
and V are disjoint. For next-state variables, we write V; to denote a copy of V, and for
symmetry we then refer to the original copy V as V. We extend this notation to any
number of transitions.

We consider hardware designs modeled as finite logical circuits [253]. Each circuit is
associated with a safety property, and an environment constraint, encoded as Boolean
formulas over input and latch variables. A state of the system is an assignment to inputs
and latches satisfying the constraint. The values of the latches are initialized using their
reset function and evolve according to the transition functions. At every timestamp, the
values of latches are determined by the values of inputs and the previous latch values.
The inputs can have arbitrary values and represent non-determinism.

Definition 10.1 Circuit. A circuit M = (I, L, R, F, P, C) is defined as a tuple consisting
the following attributes:

1. I: afinite ordered set of Boolean input variables;
2. L: a finite ordered set of Boolean latch variables;

3. R={nr(I,L) |l e L}, where (I, L) is a reset function associated with a latch
l;
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Figure 10.2: A compositional approach for the certification flow when preprocessing is
employed in a model checker.

4. F={fi(I,L) |l e L}, where f;(I, L) is a transition function associated with a
latch [;

5. P(I, L) represents the set of good states; and
6. C(I, L) encodes the set of constrained states.

In this paper, we focus on safety properties, which holds in all good states. For circuits
that do not come with explicitly given constraints, we simply consider C(/, L) = T.
When there are multiple constraints cg, ¢y, ..., we take their conjunction to form a
single one C(I,L) = A¢;. A circuit is said to be safe if the property P holds in
all constrained states reachable from the initial states. The set of initial states are
defined by R{L} = A;cr(l +> r(I,L)). The same notation is used for transitions
Fo1{L} = Neer,(b1 < fe(1o, Lo)). Both are also used for subsets of L. The convention
to use indices on formulas—while omitting explicit variable references—extends to other
circuit components, e.g., Cy stands for C'(1y, Ly).

When designing a certificate format, one of the key objectives is to eliminate the
need for quantifiers in certificate checking, allowing the process to fall within the co-
NP complexity class. For this purpose, the authors of [12] introduced the concept
of stratified reset functions, i.e., the reset functions of a circuit do not have cyclic
dependencies. This entails that the formula R{L} is always satisfiable.

Acircuit M = (I, L, R, F, P, C) is safe, if P holds in all states reachable under the
constraint. A counterexample is a path sg, s1, ..., S, from a reset state so to a bad state
sn where all s; satisfy the constraint:

Ro{L}Y A N\ Fii{L} A\ Ci A =Py
1€[0,n) 1€[0,n]

Example 10.2. A common problem in hardware design is to arbitrate the usage of
shared resources. In the following, we illustrate with such an example, also described in
Fig 10.3. Each user ¢ can send a request for the shared resources setting the input signal
req; and gains access from the acknowledge signal ack;. The crucial property is that no
two users get acknowledged at the same time. The internal design of the arbiter can be
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Figure 10.3: An arbiter for four users.

quite complex when additional properties, such as fairness, are considered. To make
the model checking task easier, we specify the constraint as C' = A,;.; ~(ack; A ack;).
This constraint can either be extracted by the model checker in a preprocessing step (we
later discuss in Sec. 10.3), or it can be specified explicitly by the hardware designer. In
both cases, the implementation details of the arbiter might be abstracted away from the
design.

Counterexamples are used to validate model checking failures. Conversely, when
model checking succeeds, we rely on a different certificate format—the witness circuit
(described in [11])—which is also the standard format used in the hardware model
checking competitions.

Definition 10.3 Witness Circuit. W = (I', L', R', F', P’,C") is a witness circuit of
circuit M = (I, L, R, F, P,C), both with constraints, if R’ is stratified and for K =
LNL:

1. Reset: R{K}NC — R{K} NC";

2. Transition: Fp1{K} ACoAC1ANCy — Fo{K}ACY;
3. Property: (CAC') = (P — P);

4. Base: R{L'} NC" — P

5. Step: PyNFo{L'y NCHANCY — P

Each condition defined above is encoded as a SAT formula. An additional polynomial-
time check that R’ is stratified [12] is needed, such that there is no cyclic dependencies
among the reset functions.

10.3 Certifying Constraint Extraction

Constraint extraction is a powerful preprocessing step that simplifies verification for
any base model checking engine [282, 283], such as k-induction. This is also one
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of the essential features implemented by ABC [177]. In this section, we address the
challenge of certifying the hidden constraints uncovered by this process, as illustrated in
Fig. 10.2. Because a witness circuit generated by the base engine only proves correctness
on the preprocessed circuit, it does not immediately satisfy Def. 10.3. Consequently,
postprocessing the witness circuit is necessary to produce a proper certificate for the
original problem.

10.3.1 Model Constraints

The first type of constraints we consider is model constraints. Intuitively, they are those
that hold in all reachable states, similar to a safety property. It is therefore evident that
adding them does not change the set of reachable states in the model. In industry practice,
it is common to verify hundreds of properties for the same design, and it is beneficial for
the verification performance to add already proven properties as constraints [286, 287].

Definition 10.4 Model constraint. Given a circuit M = (I, L, R, F, P, C'), the formula
D(I, L) is said to be a model constraint if it holds in all reachable states, i.e., the
following formula is unsatisfiable for any n:

Ro{L}y A N\ Fiim{L} A )\ Ci A Dy
i€[0,n) i€[0,n]

By Def. 10.4, during model checking, the extracted model constraints can simply be
appended to strengthen C' to form a new constraint C' A D. A base model checker that
uses for instance IC3/PDR [34] or k-induction can be then employed. Once verification
is completed, the base engine also provides a witness circuit. Next, we are going to
show how to postprocess such witness circuit to obtain one that certifies the safety of
the original circuit. For that we are going to compose it with another witness circuits for
the model constraint D.

We assume inputs and latches not shared with the model to be unique to the respective
witness circuits. Otherwise renaming is necessary.

Theorem 10.5. Given model M = (I, L, R, F, P,C') with constraint D. Let Mp =
(I,L,R,F, P,C A D) be the model under the addition of constraint D, with witness
Wp = (I”, LY, RP, FP PP CF). Further let Wp = (I”,L”,RP, FP DP, CP)
be the witness certifying that D is a model constraint, i.e, a witness for the circuit
Mp = (I,L,R,F,D,C). Assuming the inputs and latches of Wp and Wp to be
disjunct with the exception of those also shared with M, the circuit W = (I¥ U
IP LPULP, RPURP, FP UFP PP A PP CP ACP A D) is a witness for M.
Proof. Before we show that W passes every check of Def. 10.3, we note that Wp
and Wp not sharing any additional inputs or latches implies that R U RP is still
stratified. Further, given the reset check for both Wp and W the reset states in W are
simply: (RPURPY{LY ULP} = RP{L"} A RP{LP}. The same is true for encoding
transitions. We begin with the reset check and show that the premise implies D by the
witness relation between Mp and Wp:

R{KYANC = RP{K}ANCP = RP{LPA A NCP = PP =D
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are marked gray; and the initial state is marked yellow. The blue region are the states
satisfying the constraint D. Note that D is of course not a subset of = D.

Now the premise for the reset check for both Wp and Wp are met, and the conclusion
of the reset check for W follows. The premise of the transition check of W gives us
Dy, which by the transition check of Wp gives F'2 A CP and further Dy using the step
check. Again the premises for the step check of both Wp and W are fulfilled. For
the remaining three checks, no additional arguments are needed as the conclusions are
the same as in the witness checks for Wp and Wp and the premises have only been
strengthened. O

Another interesting application of the described construction is the efficient certi-
fication of multi-property circuits. Consider a model M = (I, L, R, F, P,C), where
P = /\ie[o,n} P?, and each P? typically concerns only a sub-circuit of the original.
A model checker may verify these properties individually and later compose the cor-
responding witness circuits using the same construction as above. In this case both
witnesses are produced without the addition of an explicit model constraint and the D in
the constraint definition of W is simply true. Any number of witness circuits may be
composed through repeated application of the construction, which corresponds to taking
a union over all witnesses at each component.

10.3.2 Inductive Constraints

Similar to model constraints, there is the notion of inductive constraints [282], which
after extraction from the model can be used to strengthen the already present constraint.
This is also partially motivated by inductive constraints in backward reachability [167].

Definition 10.6 Inductive constraint. An inductive constraint D (I, L) of a circuit M =
(I,L,R, F, P,C) satisfies:
(1) Fop{L} N—Dg — —Dy; and (2) -D — P.

We illustrate the nature of inductive constraints in Fig. 10.4. Intuitively, it is correct to
add any inductive constraint, since no bad traces can be eliminated. Once a trace leaves
D it cannot cross back, since —D is inductive, and no bad state can be reached with
—D — P. Therefore the model checker only needs to ensure P holds in the states that
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satisfy D (i.e., the area marked blue). Note the slightly confusing naming of inductive
constraints taken from [282]; it is the negation of D that is inductive, and moreover it is
not an inductive invariant, as it does not necessarily hold in the reset states.

We now show how to produce witness circuits for models with added inductive
constraints. The following theorem requires the constraint to also be inductive with
respect to the transition function of the witness under constraint Wp. This does not
impose a practical limitation, since D only depends on inputs and latches from the
original circuit and witness circuits typically do not introduce additional transitions for
original latches. If this does happen to be the case, F” can be restricted to the original
transitions without changing the success of the transition or step check in Def. 10.3.

To simplify the presentation, we denote a modified set of reset and transition functions
like this RV —D and F’V —D;. This construction can be easily achieved by introducing
a fresh input ¢; for each latch /, and encoding the formula D over these inputs to obtain
Dj;. With this setup, the new reset function for each latch  is defined as: ite(Dy,r],14;),
which selects r; when D; holds, and otherwise takes the value of 7;. The transition
function ite(Dy, f],4;), similarly allows to transition to any state violating D.

Since R’ is stratified and D; depends only on inputs, the resulting reset function
remains stratified.

Theorem 10.7. Given model M = (I, L, R, F, P,C), the constrained model Mp =
(I,L,R,F,P,C A D) with witness Wp = (I',L',R', F', P',C"), where D is an in-
ductive constraint in M and F' N Dy — =Dy, the unconstrained witness W =
(I')L',R'V —=D,F'V =Dy, P'V =D,C"V —D) is a witness for M.

Proof. We consider an arbitrary assignment Lo U Ly U I U I" U Ly U L]. If it satisfies
=D then also P and the property, reset and base check are trivially fulfilled. Similarly,
with the assumption —D; the transition and step check hold. If D holds, any violation
of the property, reset or base check would also be a violation for the witness relation of
Mp and Wp. Since =D is inductive under F' and F’, Dy implies D if the assignment
violates either the transition or step check. In both cases, it would also contradict the
witness relation of Mp and Wp. L]

10.3.3 Property Constraints

We now take a look at another class of constraints, namely property constraints, that
can be generated from a model by a dedicated constraint mining algorithm. Intuitively,
property constraints are implied by the property itself.

Definition 10.8 Property constraint. A property constraint D(I, L) of a circuit M =
(I,L,R, F, P,C) satisfies: P — D.

Once property constraints are extracted, their use differs from the previous two con-
straint types, as both model constraints and inductive constraints are directly appended
to the explicit constraint i.e., C' A D. Property constraints, on the other hand, require to
be integrated into the transition functions.

109



Figure 10.5: An illustration of property constraints. Since the property constraints act
as conditions in the transition function, outgoing transitions only take place in states that
satisfy D. There is no transition from states in =D to D.

Model checking under property constraints. Given a circuit M = (I, L, R, F, P,C)
with property constraint D. The circuit under the property constraint is Mp =
(I,L,R, Fp, P,C) where: Fp = {ite(Dy, fi,1) |l € L}.

This suggests that at every step, if the property constraint holds in the current state,
then it follows the same transition as before, otherwise it stays in the current state.
We illustrate in Fig. 10.5 that adding property constraints does not change the model
checking result. In other words, if the circuit under property constraints is proven to
be safe, then this implies the original circuit is also safe. This can be validated by a
certificate, constructed as follows.

Theorem 10.9. Given model M = (I, L, R, F, P,C), the model under property con-
straint Mp = (I,L, R, Fp, P,C) with witness Wp = (I', L', R', F},, P',CY,), the
witness circuit for property constraints W' = (I'L', R, F', P',C"), where F' =
{ite(Do, /P, fi |1 € K}YU{fiP |l € L'\ K} and C" = C, A\ D, is a witness for M.

Proof. Given the witness relation between Mp and Wp, we need to proof that W is
a witness for M. First we conclude that D holds in any reset of M valid under the
constraint:

R{K}NC = R{K'} NCp = R{L'}ANC, =P =P=D

Now, we assume an assignment s to Lo U Ly, U T U I’ U Ly U L] violating any of the
witness checks outlined in Def. 10.3. If Dy does not hold, the reset check is fulfilled by
the above argument. The other checks are trivially fulfilled as C{) is false. If D holds in
s, the assignment will also violate the same check for the witness relation between Mp
and Wp. ]

10.4 Relaxed simulation

According to Def. 10.3, in order for the Reset and Transition checks to pass, the con-
straint C” needs to hold for all possible extensions generated by the reset and transition
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functions. One way to check if this is the case, is to ensure that the constraint only
contains variables shared between the two circuits, which is a natural assumption. For
many model checking algorithms, for example IC3/PDR and BDDs under constraints,
it is often the case that the certificate W is simply W = (I, L, R, F, P',C) [288],
where P’ is the inductive strengthening generated by the algorithm itself, encoding an
over-approximation of the reachable states, with the rest of the circuit unchanged from
M.

However, for other algorithms where it is necessary to constrain new variables in the
witness circuit as well as to allow cyclic reset definitions, the format in Def. 10.3 has to
be relaxed to include quantifiers in the checks.

Definition 10.10 Quantified Reset and Transition. Consider the given circuit M =
(I,L,R, F, P,C), then the circuit W with W = (I', L', R', F', P',C") is a witness
circuit for the local witness variables X' = (I’ U L') \ (I U L) if it satisfies Def. 10.3,
with the Reset and Transition conditions relaxed as follows:

* Reset™ R{L} AC — X' [R'{L'} A C");

s Transition™: F1{L} A Co A C1 A C) — 3X] [Fo{L'} A CY].
If Reset? is not used, R’ has to be stratified.

If the reset functions of W are cyclic, i.e., not stratified, it is necessary to use the
reset® check. Without this existential quantification, it is not sufficient to prove the
soundness theorem of Def. 10.3: if W is a witness circuit of M, then M is safe. Proving
this theorem requires establishing a simulation relation between M and W, which in
turn requires every reset state in M to correspond to a reset state in 1.

Because the Reset” condition directly guarantees that any reset state in M aligns
with a reset state in W, we no longer need to impose the stratification requirement on
W. In other words, if Reset? is used, the stratification check becomes unnecessary.
However, even with stratified resets, due to the presence of constraints, Reset” may still
be required to ensure R'{L'} A C’ remains satisfiable, thereby guaranteeing at least one
valid reset state under the constraint in .

Nevertheless, if the quantifier-free Reset check passes, certification remains valid,
and the same holds for the Transition check. Furthermore, if the witness constraint does
not use any variables in X' that are unique for the witness circuit, there is no need to
employ the relaxed versions. All other checks remain unchanged from Def. 10.3. In the
following, we formally prove that this format constitutes a correct certificate.

Theorem 10.11. Given a circuit M and its witness circuit W that satisfies Def 10.10,
then M is safe.

Proof. We assume that W is a witness circuit for M, and do a proof by contradiction.
Suppose W is not safe. Then there is a bad trace of some finite length n in the form of
an assignment to n + 1 copies of I U L satisfying:

RO{L} ACo N Fo’l{L} ANCL...Ch_1 A anl,n{L} A Cy N\ =P,
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We extend this assignment to each copy of the variables in X that satisfies:

The reset® and transition® checks directly imply the existence of a reset state in T,
respectively a successor state. Since the transition® check only quantifies over the next
state version of the extension variables X/ the trace in W can be constructed iteratively
from reset to bad state. Applying the same argument n times yields an assignment to
(X")" satistying F;,;{L} for i € [0,n) and C; for i € [0,n]. Lastly, the property
check guarantees =P/, giving us the desired assignment. However, the Base and Step
check together ensure that the property P’ holds on all reachable states of W, thus
contradicting the initial assumption that a bad trace exists in M. O

10.5 Extending Circuits with Oracles

The core mechanism to allow certification via a witness circuit is the addition of inputs
and latches. It results in more behavior for which safety is easier to prove, i.e., following
the classical concept of inductive strengthening. Although this works well for most
model checking techniques, requiring inductiveness can be challenging for techniques
which consider multiple execution paths at the same time. A prime example is k-
induction with uniqueness constraints (Def. 10.16), where these constraints are justified
by the fact that any reachable bad state can also be reached via a shorter loop-free path.

Even though certifying k-induction has been studied before [253, 289-291], none
of these works address the use of uniqueness constraints. In this section, we extend
witness circuits with oracles, enabling reasoning about multiple possible states within
the same witness circuit. Intuitively, oracles—Ilike inputs—can be assigned arbitrary
values. However, we distinguish oracles from inputs so that they can be separately
identified and correctly handled in the certificate checks.

Definition 10.12 Step check with oracles. Consider the circuit M = (I, L, R, F, P, C),
then the circuit W = (I'UO’, L', R', F', P',C") where O’ are the oracle inputs. W is
a witness if R’ and F” are independent of O’ and the circuits satisfies the conditions in
Def. 10.3, where the step check is relaxed to:

Step” : VO, [Py A F§ {L'} NCGI AN CY — P

If R' or F’ are dependent on O’, we need additional quantifiers in the respective
checks similar to Def. 10.10.

Definition 10.13 Reset and Transition with oracles. Given a circuit M, the circuit W,
with M = (I,L,R,F,P,C),W = (I'UO', L', R',F',P',C"),and X' = (I' U L) \
(I U L), is a witness circuit if it meets Def. 10.3, where the step check has been relaxed
to Step” from Def. 10.12 and either or both reset and transition checks have been relaxed
to:

* Reset?™: R{L} AC — 3X'VO' [R'{L'} A C"];
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* Transition®": Fy1{L} A Co A C1 A Cy — IX[VO] [Fy{L'} A CY).
The following we show the soundness of certificates with oracles.

Theorem 10.14. A witness circuit that satisfies the certificate format with oracles is a
valid certificate.

v v

Proof. Since the oracles are only in the witness circuit, the reset® and transition?
conditions still allow to do the construction of the trace in W the same way as in the
proof of Theorem 10.11. The same is true if R’ or F” are syntactically independent of
O’ and the quantifier-free checks from Def. 10.3 are used. What is left to show is that no
bad state is reachable in W. We will be considering the equivalence classes induced by
O’ on the state space of W, i.e., states only differing in O’ are in the same equivalence
class. Assume there exists a bad trace s, . . ., s, in W. By the reset check, all states in
the equivalence class of s also satisfy R’, and by the base check are guaranteed to be
good. By applying the transition check to all states in the equivalence class of sg, we
know they each have a transition to all states in the equivalence class of s;. This allows
us to apply the step condition to all states in the equivalence class of s1, concluding that
they are all good. This argument can be applied n times to show that all states in the
equivalence class of s,, are good — including s, itself. O

This more complex certificate is, in fact, hard for the second level of the polynomial
hierarchy.

Theorem 10.15. A closed formula ¥V A3E f is true exactly if W = (I', L', R', F', P', C")
passes the Step” check, where I' = A,0' = B, L' = {{},r, = T,fi = T,C' =T,
and P' = —f N\ L.

Proof. In the Step” check, F” is simply ¢, which implies —P{. With C constant true,
Oy, quantifies over = fo A—{. Since ; is independent of Of), we can leave it behind when
moving the rest to the other side of the implication. Omitting the universal quantifiers for
unused variables, we are left with: V0oV¢1V Ay [0y A €1 — TEy [ fo]], which is trivially
true for all valuations of the first two quantifiers, except for one where it simplifies to
Y AgdEy fo. O

10.5.1 Uniqueness Constraints

In the following, we present certificate generation for uniqueness constraints. We begin
by providing the definition of k-induction under uniqueness constraint.

Definition 10.16. A property P of a given circuit M = (I, L, R, F, P,C) is said to be
k-inductive under uniqueness constraints iff the following holds:
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Figure 10.6: Example of the k-witness construction. The figure displays the state
space of a circuit M, which is 3-inductive under uniqueness constraints, alongside its
corresponding k-witness circuit W (Def. 10.17). Bad states are marked in red, state 0
is the only initial state. Witness states that differ only by the value of O’ are grouped
vertically. If at least one state in a group violates the property, the entire group is
highlighted with a light red background.

Ro{L} A ( /\ Fiixi{L}) — ( /\ (/\ C;) — H) and
i€[0,k—1) i€[0,k) je[0,i]

(/\ E,i+1{L}) A ( /\ Ci N\ P;) AN uniquey, — (Cy, — Py),

1€[0,k) 1€[0,k)

where uniquey, = /\ (I; 4 1) V (L; <4 Lj).
0<i<j<k

The first formula, called the initiation check, specifies that the property holds for
k steps from the initial states. The second formula is an inductive check such that if
the property holds for % steps then it also holds at the k£ + 1th step. The uniqueness
constraint ensures that, in the inductive step, the k& consecutive states are all distinct
from one another.

To certify k-induction under uniqueness constraints, we can construct a witness
circuit, using additional inputs as oracles. An example for an intuitive understanding
of our construction can be found in Fig. 10.6. The construction relies on the following
idea. A k-inductive property can be strengthened to be inductive: for every bad state, all
predecessors up to k steps back are labelled as bad states too.

Definition 10.17 k-witness circuit under uniqueness constraints. Given a circuit M =
(I, L,R,F, P,C) with k € NT. The k-witness circuit under uniqueness constraints is
W ={IUO' L ,R,F, P C),where

* 0" =Uicjo I' and

* P'= Nicjop) [v' — P(I*, L")], with

v = C(I, L), v' = v =L AC(IF, LY,
o [9=Land L' = {f;(I', L)) |l € L)}.
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In the above definition, L', ..., L*~1 are not necessarily latches: we directly use
the output of the transition functions, which are simply AND-gates in practice. The
variables v’ keep track of the depth up to which the path along the L’ remains valid;
that is, only traverses states satisfying the constraint. The latches are the same in the
original and the k-witness circuit, however, the k-witness circuit has more bad states,
as it requires all states reachable in k — 1 steps to be good. Note that by construction
the reset and transition functions are independent of the oracles, thus the reset®" and
transition™" checks are not necessary and the quantifier-free versions should be used.

Even though Def. 10.17 is also a valid construction for k-induction without uniqueness
constraints, it is expensive for the certificate checker to perform QBF checks. Hence in
the case where uniqueness constraints are not required, the witness circuit construction
should still follow the construction outlined in [12]. Their approach produces inductive
witnesses by recording a history of & states rather than precomputing a possible future.
While this method avoids the quantification, it would violate the transition check,
since the witness is not allowed to transition to a state already in the history while the
correctness of the construction relies on the model being inductive under uniqueness
constraints.

‘ A O ‘ by U ‘ Xp Up ‘ XF Ur
Mean (39) | 25411 64 | 77720 37.18 | 3623 30.77 | 660.37 4.15

picorv32 (8) | 54042 201 | 3455.78 144.77 | 107.99 128.20 | 3037.94 14.89
mentor (1) 31613 36 | 50596 38.70 | 2340 2553 | 440.87 12.37
dspfilters (17) | 28397 49 | 120.07 945 | 29.66 7.58 58.22 1.22

sm98 (3) 5126 2 25.17  21.35 1.56 1.16 483 238
zipepu (7) 2946 2 3.46 2.57 1.49 1.46 054 023
zipversa (3) 2775 3 5.92 3.44 2.17 2.13 0.70  0.26

Table 10.1: The HWMCC set contains 39 multi-property benchmarks, split into 7
families, each with the same number of properties (B). The other columns display the
number of and-gates (A), total time taken in seconds for checking individual witness
circuit for a single property (2), and time taken for checking the composed witness
circuit (U). Additionally, the table presents the time taken up just by the Property check
for the individual witnesses (3 p) and the composed witness (Up), which in both cases
has to be done B times. As well as the Transition check, which has to be done for
each individual witness (X ) but only once for the composed witness (Ug). This is the
same for every other check, but the transition check is the most complex on this set of
benchmarks. Each row presents the mean over the benchmarks in the family (number
given in parentheses). The mean over all benchmarks is presented at the top.

Theorem 10.18. Given a circuit M = (I, L, R, F, P,C) with some k € N*, and a
k-witness circuit W = (IUO', L, R, F, P',C). If M is k-inductive under uniqueness
constraints, then W is a valid witness circuit for M.
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tme tCert tsar k1 A
bobcount 426.68 2686 240 76 3 77
eijks298 383.05 219233 9.77 138 3 225
pdtvispeterson 6.29 24935 276 59 2 700
pdtvisvending00  14.25 to 237 35 2 959
pdtvisvending02  199.05 to 203 33 2 958
pdtvisvending05 3.13 26663.62 1.70 28 2 951
pdtvisvending07 341 2211790 234 29 2 952
pdtvisvending08 117.81 to 207 33 2 950

Table 10.2: In the HWMCC’ 10 benchmark set, 8 additional instances are solved with
uniqueness constraints. We give the model checking (¢5,¢) and certification time (£cer¢).
The table also presents the portion of the certification time taken for the 4 SAT checks
(tsar). All times presented are in seconds. The last three columns denote the inductive
depth k, the number of input variables I, and gates A respectively.

Proof. Since L, R, F' and C remain unchanged, the reset and transition condition hold
trivially. Given C, the new property P’ clearly implies P, thus the property check is
satisfied. For the base check we note, that if an initial state of the witness violates P’, a
bad state in the original circuit can be reached in & steps or less. It is left to show that if
the step™ check fails, the original circuit is not k—inductive. Assume two consecutive
states 1’ and v in C’ for which the step” check fails. Let u and v be the states in M
induced by the assignment to L in v’ and v’ respectively. The shortest path from v to
a bad state has exactly k states, all are different, satisfy the constraint, and all but the
last are good. If the number of steps was less, P’ would not hold in «/, and if it was any
more, P’ would hold in v’. The other two claims follow from the path being the shortest.
Since w is guaranteed to satisfy C' and be different from the bad state, prepending the
path with v yields a path in M consisting of k£ unique good states followed by a bad
state, thus M is not k-inductive under uniqueness constraints. O

10.6 Experimental Evaluation

We implemented the proposed certificate format in the open-source certificate checker
CERTIFAIGER, together with the relaxed checks that require quantifiers. Note that
in all HWMCC benchmarks, all reset functions are stratified, as the standard AIGER
format used in the competitions only supports stratified resets. We also extended the
k-induction-based model checker MCAIGER [270] to generate k-witness circuits as
defined in Def. 10.17. Additionally, we implement our tool AIGMERGE' that uses the
construction described in Theomerm 10.5 to compose arbitrary circuits. CERTIFAIGER
utilizes KISSAT [30] for SAT checks and the QBF solverQUABS [292] for quantified
checks. All input circuits are in the AIGER 1.9 format. Each certificate check is

' AIGMERGE may eventually be added to the set of AIGER utilities at https://github.com/arminbiere/aiger.
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generated as combinatorial circuits in either AIGER (for SAT checks) or QAIGER (for
QBF checks) and is then translated to CNF or the circuit-based QCIR format [293].

The goal of our first experiment is to evaluate the certification method for compos-
ing witness circuits, which also provides insight into certifying extracted constraints.
Although we could not find an open-source model checker that implements explicit
constraint extraction, the concept of model constraints naturally arises in circuits where
multiple properties are of interest. Therefore, we focus on multi-property benchmarks
that are present in HWMCC’ 12 and HWMCC’19. We ran the open-source certifying
model checker VOIRAIG for each property individually, which left us with one witness
circuit per property that could be proven. We then used AIGMERGE to combine all
the witness circuits for an individual model into one. Certificate checking for such a
certificate proceeds as follows: Verify the reset, transition, base, and step condition
for the composed witness according to Def. 10.3. For each original property run the
property check. We compare the total time of these checks, to total time it take to
certifying the original witness circuits for each property individually. We present the
results obtained in Table 10.1. As can be seen, directly verifying the composed witness
circuit is significantly more efficient than verifying individual witness circuits for each
property. Interestingly, the transition check appears to be the bottleneck during the
certification process, differently from experimental results in [9] where the step check
always take significantly longer.

In the second experiment, we study the effectiveness of our certification method for
k-induction under uniqueness constraints. We selected the benchmarks that require
uniqueness constraints from HWMCC’10. Results are summarized in Table 10.2. We
used a timeout of 50,000 seconds for certificate checking. Despite the QBF check
creating a bottleneck in certification performance, our certifier successfully validated 5
out of 8 instances. The QBF solver QUABS failed to complete the step> checks for three
instances within the time limit, whereas for the same instances the rest of the checks were
solved in less than 10 seconds (see tg47 in the table). While QBF solving is inherently
more challenging than SAT solving, we attribute the substantial performance gap in
part to recent advances in SAT solving—particularly the circuit-specific optimizations
introduced in KISSAT [1]. We believe that incorporating similar optimizations into
QUABS could significantly improve the efficiency of QBF-based certificate checking.
Exploring such enhancements is an important direction for future work.

10.7 Conclusion

Recent hardware model checking competitions have embraced a standardized certificate
format, relying on simple SAT-based certificate validation. This approach has proven
highly effective, with certification overhead constituting only a small fraction of the total
verification effort. In this work, we introduce certification generation techniques tailored
to both explicit and implicitly extracted constraints for three different constraint classes.
Furthermore, we present alternative QBF-based checks to replace pure SAT checks in the
certificate format, addressing the challenges of certificate generation posed by intricate
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reset logic and complex encodings in model checking. Extending this, we also introduce
a certification approach for k-induction under uniqueness constraints. The empirical
evaluation, conducted on a wide range of competition benchmarks, demonstrates the
effectiveness and practical relevance of our method. Looking forward, we plan to
incorporare the remaining techniques in bit-level hardware model checking, such as
retiming [294] and localization. Furthermore, we aim to broaden the scope of our
certification method to infinite-state systems to support program verification as well as
exploring the certification of security properties.
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Abstract Certification was made mandatory for the first time in the latest hardware
model checking competition. In this case study, we investigate the trade-offs of requiring
certificates for both passing and failing properties in the competition. Our evaluation
shows that participating model checkers were able to produce compact, correct certifi-
cates that could be verified with minimal overhead. Furthermore, the certifying winner of
the competition outperforms the previous non-certifying state-of-the-art model checker,
demonstrating that certification can be adopted without compromising model checking
efficiency.
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11.1 Introduction

Competitions have played a key role in advancing the state of the art in automated
reasoning tools by enabling direct performance comparisons across a wide range of
solvers, offering challenging benchmarks, and fostering new research. However, many
of these tools operate as black boxes by providing only true or false as an output.
Certification addresses this limitation by requiring a counterexample when verification
fails and a proof when it succeeds. Since certificates can be independently validated,
they significantly enhance confidence in the correctness of verification results, thereby
improving the reliability of solvers.

One goal of using certificates in hardware model checking is to repeat the success
story of proof certificates in SAT for this automated reasoning domain with a large
industrial user base. Besides increasing trust in verification results, certificates enable
more complex design optimizations, allow to continue using legacy code and can
streamline and improve efficiency of tool development in both verification and synthesis.
The simple proof certificate format used in SAT still allows to capture a wide range
of solving optimizations at industrial scale. In this case study, we investigate whether
the simple model checking certificate format employed in the recent hardware model
checking competition has the potential to achieve the same for hardware model checking.

The Hardware Model Checking Competition (HWMCC) has its roots in a rather
lively discussion at the 2" Alpine Verification Meeting (AVM) in 2006 among Daniel
Kroning, Dirk Beyer and Armin Biere. The debated question was how model checking
research as well as industrial applications can benefit from competitions in the same way
the SAT competitions were instrumental in advancing SAT. Daniel Kroning and Armin
Biere argued to focus on hardware gate-level models with simple and clear semantics. !

This argument prompted the development of the AIGER format [50] used in the first
(hardware) model checking competition, affiliated to CAV’07. This first version of
AIGER (20071012) came with a library for parsing and other essential tools, including
a translator from SMV and BLIF to AIGER. The challenge of the first competitions in
2007, 2008 and 2010 was to collect benchmarks.

For the 2011 competition the first major revision of the AIGER 1.9 format [51]
included liveness properties and constraints. The following competitions from 2012—
2015 [295] and in 2017 [160] included a deep bound track to emphasize the common
industrial practice of relying on incomplete but deep bounded model checking. In 2019
a word-level track was established based on the BTOR 2.0 format [296] proposed at
CAV’18. After focusing on word-level in 2020 the organizers decided in 2024 [21] to
reintroduce a bit-level track but take the chance to force all participating model checkers
to produce certificates.

The introduction of mandatory certification in HWMCC’24 significantly impacted
participation and competition dynamics. The 2024 competition saw a record nine
participants, up from three in the previous edition, reflecting growing interest and

'Dirk Beyer proposed to use C as input language, which is much harder to master, due to its complex
semantics. Accordingly the first SV-COMP took place in 2012.
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accessibility. Discussions with participants revealed that new rules, particularly the
requirement for certification, leveled the playing field by encouraging the development
of verifiable solvers. Feedback indicated that participants successfully implemented
certificate generation based on our published results [9, 12, 13, 253]. It was also noted
that implementing correct model checking algorithms demanded substantially more
effort than generating certificates.

The certificate format itself has undergone several iterations with the ultimate aim
of its use in the competition. In HWMCC’24, all participating model checkers were
required to produce proofs alongside the model checking results for both safe and unsafe
instances. For unsafe instances, the certificate is a trace serving as a counterexample,
which can be validated via simulation; as for safe instances, it is a proof witness circuit.
For the competition we use an extended version of the witness format defined in [9],
that supports constraints, an essential feature of AIGER 1.9.

We first describe the certificate format used in the competition, then present experi-
mental findings. We investigate the overhead introduced by certificate checking in model
checking and results show that it accounts for only a fraction of the total verification
time. Moreover, we compare the certifying winner of HWMCC’24, RIC3, against the
state-of-the-art model checker ABC which does not support certificate generation. And
see that even when including the time for witness validation, RIC3 outperforms ABC.
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11.2 Related Work

Certification in other competitions. Certification has been an essential part in many
other competitions. In SAT competitions [14], certification has been mandatory for
almost a decade, as a fundamental requirement. Solvers must produce certificates
for both SAT and UNSAT instances: a satisfying truth assignment for SAT and a
proof in the DRAT [101] format for UNSAT. A solver is disqualified from the main
track if a single certificate is found invalid. The software verification community is
following suit. At SV-COMP’24, it is the second year of having a dedicated track for
witness validation, with a range of participating witness validators [297]. The MaxSAT
Evaluation [298] has also taken a step forward in 2024 by requesting proofs for the first
time. In QBF Evaluations [299], there used to be a dedicated Evaluate & Certify track,
where solvers are required to produce proofs that are easier to check than the solving
task; however, as the organizers pointed out, only a few QBF solvers support certificate
generation. SMT competitions (SMT-COMP) [300] and ATP System Competitions
(CASC) [301] feature a wide variety of theories and have yet to adopt a universal
certification standard. Classical Planning is similar to verification, but usually more
focused on finding solutions (plans). Nevertheless, a deductive certificate format [302]
has been introduced, and extended to support UNSAT certificates produced by an
underlying SAT solver [303].

Related work in model checking certification. Deductive proof systems have been
used for generating proofs of model checking. For example, the author of [246] addresses
p-calculus, while the authors of [243] focus on liveness and several pre-processing
techniques. These approaches require model checkers to provide deductive proofs. The
works in [289, 290] explore the use of inductive invariants as certificates for k-induction.
Notably, the certificate format employed in HWMCC’24 is also compatible with these
inductive invariants. The authors of [244] use liveness-to-safety reduction techniques
to certify liveness properties. The problem of certifying model checking has also been
addressed in infinite-state systems [245, 304] where SMT solvers are leveraged for
unbounded state spaces. An alternative approach to providing certificates, is to formally
verify the model checker itself, as demonstrate in [237].

11.3 Certificate Format

We assume the standard notions and terminology of Boolean logic. In the following,
we consider hardware designs modeled as Boolean circuits encoded as sequential and-
inverter graphs (AIGs)[50, 51, 57, 262]. Such a Boolean circuit is given as a tuple
M = (I,L, R, F, P,C) where I is an ordered set of inputs, L is an ordered set of latches,
R defines the set of reset states, represented as a reset predicate that holds when every
latch [ € L equals its reset function ry; F' is the transition predicate that refers to two
consecutive states, and encodes that each latch in one state is equal to its corresponding
transition function f; applied to the previous state; P and C' are predicates that define
the set of good states and the set of states valid under the constraint, respectively. These
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predicates, along with the reset and transition functions, are encoded in the circuits as
binary AND-gates with possible negation at the incoming gates.

We use the notion of a reset predicate R being stratified; for space reasons we refer
to [12] for formal definitions. In essence, it means that the dependencies that the reset
functions introduce among the latches are acyclic. For K C L, R{K} and F{K}
restrict these predicates so only the latches in K are required to be equal to their reset or
transition. When referencing a sequence of states, we use indices on the predicates to
represent the corresponding copy of the predicate at a certain state in the sequence.

A trace of length n is a sequence of n+1 states, where the first state needs to satisfy R,
every pair of consecutive states satisfies /' (written F; ;1 for the ¢-th and its successor
state) and all states satisfy the constraint C. If the last state violates P, the trace is bad.
Thus a satisfying assignment to the following formula certifies that a circuit is unsafe:

Ry N /\ Fi,i—i—l AN /\ C; N —P,.
i€[0,n) 1€[0,n]

For safe instances, the certificate format employed in HWMCC’24 takes the form of
witness circuits, defined as follows.

Definition 11.1 Witness Circuit. The circuit W = (I', L', R', F’, P, C") is a witness
circuitof M = (I, L, R, F, P, C), if R is stratified and for K = L N L":

1. Reset: R{K}NC = R{K}ANC";

2. Transition: Fp1{K}ACoANC1ANCy = Fo{K}ACY;
3. Property: (CAC') = (P = P);

4. Base: R{L}NC" = P;

5. Step: PyNFy {L'y NCYNCY = P

The five conditions described above are simple SAT checks. An additional polynomial-
time check is required to verify that R’ is stratified. If all checks pass, M’ is a valid
certificate for M, certifying its safety property. The first three conditions in Def. 11.1
establish a simulation relation between two circuits, such that if M’ is safe, M is also
safe. Intuitively, an initial state in the original circuit M corresponds to an initial state
in the witness circuit, and each valid transition in M corresponds to a transition in M.

Property P’ is a strengthening of P. Consequently, safety of M’ implies safety of
M. In summary, a bad trace in M corresponds to a bad trace in M’. A sketch of the
traces for both M and M’ is provided in Fig. 11.1. The latter two checks (Def. 11.1.4
and Def. 11.1.5) prove P’ to be an inductive invariant, entailing the safety of M'. We
provide a high-level intuitive illustration of Def. 11.1 in Fig. 11.1.

This is a slight extension to the format in [9], as it supports constraints and now covers
all AIGER 1.9 [51] features except liveness. In HWMCC’24, witness circuits are also
produced as AIGER files. The witness circuit validation is implemented in the certificate
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Figure 11.1: An illustration for the correctness of Def. 11.1. Assuming that a circuit
M with a valid witness M’ has a bad trace leads to a contradiction. Depicted are
the overlapping sets of variables and how conditions of the witness check are used to
construct a bad trace in M’, and arrive at a contradiction. For Transition and Step only
one application is illustrated.

checker CERTIFAIGER? used for the competition, but has not been described in detail
before. For efficient certification, CERTIFAIGER leverages the SAT solver Kissat 4.0.0,
winner of the SAT competition 2024.

11.3.1 Soundness of the Certificate Format

We present a proof that the existence of a witness circuit as defined in Def. 11.1 indeed
certifies the safety of a model. The proof extends what is presented in [9] by considering
constraints.

Theorem 11.2. Given two circuits M and M', with M = (I,L,R,F, P,C), and
M' = (I''L', R\, F', P".C"). If M is a valid witness circuit for M, then M is safe.

Before proving the main theorem, we first introduce some additional notation: An
assignment maps a subset of the gates to true or false, and is always consistent with
the valuation of the AND-gates. Extending an assignment means assigning more gates
while leaving previously assigned gates unchanged. We refer to the reset gate associated
with latch [ as r; and the primed version 7, when referencing the reset gates used by R’.

Every gate g refers to the Boolean function defined by its fan-in cone, and we write
g(s) to denote that we consider the function under an assignment s, i.e., the variables in
g which are assigned by s are replaced with the corresponding constants. A function
g semantically depends on a variable v if an assignment exists under which ¢(s,) and
g(s—y) evaluate to different truth values.

We first show that a reset state in M corresponds to a reset state in M.

“https://github.com/Froleyks/certifaiger
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Lemma 11.3. For circuits M = (I, L, R, F,P,C)and M' = (I',L',R', F', P, C")
satisfying the reset check (Def. 11.1.1) and R’ stratified, any assignment to I U L
satisfying R{K'} N C, where K = L N L/, can be extended to satisfy R'{L'} N C'.

Proof. Assuming the reset check passes and R’ is stratified, let s be an arbitrary but
fixed assignment to I U L satisfying R{K} A C. The assumptions of the Lemma
further imply that s satisfies R'{ K} A C’. To show that s can be extended to satisfy
R'{L’}, we first prove for each latch [ € K, r](s) has no semantic dependency outside
(IUL)N(I'"UL'). Assume, for contradiction, there is alatch [ € K with 7(s) ¢ r](su)
where s, is the same as s except for the value of some gate u € (I’ U L’)\(I U L). We
have | ¢ r{(s,) and therefore R'{ K} does not hold under s,.. However, u is not in
TUL and R{K} AC still evaluates to true under s,, thus implying R'{ K}, and leading
to the desired contradiction.

Since R’ is stratified, the semantic dependencies of the reset gates - can be seen
as a topologically sorted graph. Given the above result, when considering r;(s), the
remaining dependency graph can be sorted topologically such that the variables in
(IUL)N(I'"U L) are at the bottom. Thus, s can be extended to satisfy R'{L’} by
assigning the remaining latches in the reverse of that order. The extended assignment
still satisfies R{ K'} A C and thereby C". O

We can now move on to prove the correctness of the certificate format, i.e., the proof
of the main Theorem 11.2. Refer to Fig. 11.1 for a visualization of the proof.

Proof. Suppose, for contradiction, M is unsafe. Then there is a bad trace of some finite
length n in the form of an assignment to n + 1 copies of I U L satisfying:

RQ{L} A Co A F071{L} ANCLA--ANCp_1 A Fn—l,n{L} A Cy AP,
We extend this assignment to each copy of the gates in I'\I U L'\ L that satisfies:
R{L'} NCoNFy {L'Yy NCY A -~ ANC y ANF_y ALY ACp AP

Let X' = (I'UL')\ (I UL). The assignment satisfying Ro{K} A Cy can by
Lemma 11.3 can be extended to X) satisfying R{{L’} A C’. With that and the transition
check F; { K} A (1 is satisfied and the assignment can be extended to X7 satisfying
F§1{L'} A C1 by the definition of transition functions.

Applying the same argument n times yields an assignment to (/ U L U I’ U L")™
satisfying F}, {L} fori € [0,n) and C; for i € [0,n]. Lastly, the property check
guarantees — P, giving us the desired assignment. However, the base and step check to-
gether ensure that the property P’ holds on all reachable states of M, thus contradicting
the initial assumption that a bad trace exists in M. O
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11.4 Evaluation

In this section, we present a comprehensive analysis of the competition results 3, focusing
on the overhead of certificate generation and checking. Specifically, we address the
following three questions:

1. What is the runtime overhead associated with validating certificates?
2. What is the space overhead associated with storing certificates?
3. How do certifying model checkers compare to the state of the art?

Experimental Setup. The 2024 competition ran on a cluster of 48 compute nodes
equipped with an AMD Ryzen 9 7950X 16-core processor at 4.5 GHz and 128 GB
or RAM, running Ubuntu 20.04 LTS. For fairness, the experiment described in Sec-
tion 11.4.3 ran on the cluster used for the last competition in 2020. Each node has access
to two Xeon E5-2620 v4 CPUs, for a total of 16 cores running at 2.1 GHz, and 128 GB
of RAM.

We focus on (all) the 319 bit-level benchmarks of HWMCC’24, which were trans-
lated from the word-level (BTOR/bit-vector) track of HWMCC’24. The majority of
the benchmarks (250) are new benchmarks submitted in 2024 by three different groups,
including benchmarks for checking safety properties of open source RISC-V cores,
sequential equivalence checking, branch coverage problems, as well as software verifi-
cation problems, which were translated from SV-COMP’24 [297]. The remaining 69
benchmarks were selected randomly from previous competition years (2019 and 2020).
Each model checker had exclusive access to a node, with a 120 GB memory limit and
a one-hour wall-clock limit. A separate limit of 10 hours was imposed for certificate
checking.

Note that for precision and reliability of measurements, the competition cluster uses
runexec to measure resource consumption of the model checkers. We further rely on
it to properly isolate the processes and to enforce both the time and memory resource
limits.

11.4.1 Certificate Checking Overhead

We now evaluate the overhead introduced by certificate checking. For each solver,
we consider the model checking time, ¢y, the time required to validate the produced
certificate, tcgrr, and the total time trorar = twmce + feerr- The certificate checking
overhead for a model checker refers to the additional time required to run all benchmarks
when certification is enabled. Note that benchmarks unsolved by the model checker are
excluded from this metric. The results are displayed in Figure 11.2 where both safe and
unsafe instances are considered.

The clear winner of the competition is RIC3, demonstrating superior performance
on both safe and unsafe benchmarks. When considering only safe benchmarks, the

3https://hwmcc.github.io/2024
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Figure 11.2: HWMCC’24 results (319 benchmarks). The plots show the number of
solved instances as a function of time. For each model checker, we present (1) the
model checking time and (2) the total time for model checking and certificate validation.
Diamonds represents the time taken to model check a circuit and validate the produced
witness, while dots indicate model checking time only. Benchmarks whose certificates
were especially time-consuming to verify are labeled. The Virtual Best Solver (VBS)
indicates the top solver performance on each instance. The legend includes the overall
certification overhead. The results clearly indicate, that certificate validation only adds
minimal overhead.

ranking remains virtually unchanged, with FRIC3 narrowly outperforming SUPERCAR.
As for unsafe instances, which constitute approximately 30% of solved benchmarks,
SUPERCAR slightly outperforms PAVY. In both scenarios, RIC3 maintains its lead and
performs impressively close to the virtual best solver.

In Figure 11.2, we also identify six outliers where the combined model checking
and certification time exceeded the one-hour model checking timeout by more than 5%.
The difficulty in their certification seems to be related to the witness circuit generation
process within the model checker, as for each of these instances, another model checker
found a witness circuit, which could be validated under 100 seconds. An exception
is the x-epic16-p057 benchmark, which was solved exclusively by RIC3. Certificate
checking never exceeded the 10-hour limit.

As Figure 11.2 shows, the overall certification overhead only gives rise to a small
fraction of the model checking time, which is highly promising and highlights the
effectiveness of the certificate format. For instance, when using RIC3 to model check
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Figure 11.3: Size of produced witness circuits relative to their original model circuit.
The x-axis represents the set of benchmarks, sorted alphabetically, whereas the y-axis
indicates the certificate size (gates) relative to the model. The legend also shows the
geometric mean of the relative certificate size for each model checker and all produced
certificates combined. Dots stacked vertically correspond to the same benchmark. Since
the x-axis is sorted by benchmark name, neighboring instances are likely to belong
to the same family. For clarity and space reasons, only a select few benchmarks are
explicitly labeled. We observe an overall relative certificate size of 1.74, which indicates
the compactness of the certificates.

all 248 instances it solved, the total time is increased by only 34% when all produced
certificates are validated. In general, validating certificates for safe instances is a more
challenging task than validating simulation traces for unsafe ones, a trend similar as in
SAT solving. In fact, simulation time accounts for only 2% of the overhead in RI1C3, and
even less for all other solvers.

11.4.2 Certificate Size

Next, we evaluate the size of witness circuits for safe instances, where circuit size is
measured in terms of gates, which includes the number of inputs, latches, and AND-
gates. The relative certificate size is defined as % Figure 11.3 presents the
relative certificate sizes for all solved instances. Note that appnote and x-epic families,
comprising 52 and 13 benchmarks respectively, depicted in the plot, include several
multi-property benchmarks. In these cases, the benchmarks represent the same model,

differing only in the property to be checked.
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Figure 11.4: Comparing RIC3 (2024 winner) with ABC (2020 winner). The same
HWMCC’20 hardware setup is used, for both benchmarks sets (2020 and 2024). RIC3
is also run in a fully certified mode, where each result is confirmed by checking the
certificate. Note that for these certified runs the shown run-time not only includes
model checking time but also certificate production and certificate checking time. We
observe that on both sets RIC3 consistently outperforms ABC, even when accounting for
certificate validation time.

We observe that PAVY produces smallest witnesses, with a geometric mean ratio of
1.22, whereas SUPERCAR exhibits the highest ratio of 2.62. Overall, more than 80%
of the produced witnesses are less than twice as large as the certified model, with a
geometric mean ratio of 1.74 across all produced witness circuits.

It further turns out that PAVY consistently generates witnesses substantially smaller
than their corresponding models. Notably, this was not possible in earlier versions of the
certificate format [12, 13, 253], which required the entire model to be embedded within
the witness circuit. The original format was revised in [9] and went through another
update for the competition, which is described in Sect. 11.3. This version allows, beside
constraints, optimized witnesses that focus on a subset of the certified model, enabling
significant reduction in witness size.

Witness size only correlates weakly with validation time. The biggest witness,
produced by SUPERCAR for the largecounter benchmark, contains over 7 million gates
for a model with fewer than 2 thousand gates, yet is verified within 900 seconds, which
is 30% faster than model checking. Conversely, the two difficult-to-check eca witnesses
produced by PAVY are 20% smaller than the model.
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11.4.3 Comparison to State of the Art

Since participating model checkers in HWMCC’24 generate certificates, i.e., are cer-
tifying model checkers, it remains to show data on how certificate generation affects
solver speed. We thus compare RIC3, the HWMCC’24 winner, with the state-of-the-
art model checker ABC, the winner of the previous HWMCC edition in 2020, where
witness circuits were not yet introduced. It is worth noting that the industrial-strength
model checker ABC has dominated the bit-level track of the HWMCC since its debut in
2008. However, it could not participate in the 2024 competition, as certificates are now
mandatory.

We use the version of ABC, which was submitted to the HWMCC’20, and was tailored
specifically for the competition thus distinct from its public releases. To ensure that
ABC is used with the same hardware specifications as expected by the participants in
2020 we run our experiment on the HWMCC’20 hardware. Note that this hardware is
significantly older than the cluster used for HWMCC’24.

Note that the benchmarks from HWMCC’20 and HWMCC’24 were both included
(there was no competition in between). The two sets are mostly distinct with only 8
benchmarks in common. This is following the SAT competition practice: HWMCC uses
mostly new benchmarks every year, adhering to the SAT Practitioner’s Manifesto.

Figure 11.4 shows that R1C3 convincingly outperforms ABC on both benchmark sets.
Notably, in 2020, RIC3 solves 36 more benchmarks and is faster on 247 out of the
256 benchmarks solved by both model checkers. For RIC3, we also include a certified
version, which represents its performance if it did internal certificate validation, and
every benchmark is only reported as solved after the certificate has been successfully
validated. Even in its certified mode, RIC3 still holds a clear lead, losing only one
instance per year due to certificate validation exceeding the remaining time before the
one-hour model checking timeout.

One minor exception is the performance on the 2024 benchmarks within the first 30

seconds, where the certificate checking adds a significant enough overhead for ABC
to catch up to the certified version. Nevertheless, certificate production introduces no
measurable overhead to overall model checking performance. These results demonstrate
that RIC3, is a robust and efficient model checker, that presents superior performance
while providing added benefits of certifying.
Invalid certificates. In HWMCC’24 and the experiments presented above, producing an
invalid certificate causes the benchmark to count as unsolved. Out of the 1536 certificates
generated during the competition, 44 were found to be incorrect. They were produced
by four model checkers: SUPERCAR (20), NCIP-MINICRAIG (9), NCIP-PORTFOLIO (8),
FRIC3 (7). The incorrect certificates produced by SUPERCAR are all simulation traces,
notably 8 of them are for benchmarks which have been proven safe by other model
checkers. In addition to 3 more incorrect simulation traces from FRIC3, all other invalid
certificates were witness circuits failing one of the checks outlined in Def. 11.1.

Many of the invalid certificates stemmed from bugs uncovered by the organizers
before the competition through extensive fuzz testing. The fuzzer and subsequent delta-
debugging helped identify minimal failing circuits, shared subsequently with the model
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checker developers for fixes. Initially, all model checkers produced invalid certificates.
After extensive feedback, most solvers passed thousands of fuzzer-generated test cases
with correct certificates. This process highlights the benefits of certifying model checkers
to improve their robustness.

Summary of results. Our experimental evaluation entails the following key findings.
(i) Minimal overhead: certification adds only a small runtime overhead, representing a
fraction of the total model checking time. (ii) Compact certificates: optimized certificate
formats reduced storage requirements, with over 80% of certificates being less than
twice the size of the certified model. (iii) Impact on performance: RIC3, the 2024 winner,
outperformed the 2020 winner ABC, even when all certificates are verified, demonstrating
that certifying approaches can simultaneously provide correctness guarantees and strong
performance.

11.5 Conclusion

HWMCC’24 marks the first time that the Hardware Model Checking Competition has
mandated certification for all participating solvers. Our case study confirms that certifica-
tion can be integrated with minimal overhead while significantly improving confidence
in verification results, illustrating the practical benefits of mandatory certification in
hardware model checking.

Looking ahead, we call on more participants and model checker developers—both
in academia and industry—to adopt and support certification. Building on the success
of HWMCC’ 24, we intend to extend certification to the word-level track, for which
a certificate checker CERBOTOR is already publicly available. However, challenges
remain, including the need to develop techniques for generating certificates tailored to
word-level-specific methods and addressing the use of trustworthy SMT solvers, which
require SMT-based certificates.

On the other hand, a certifying liveness track is under planning, although this endeavor
requires certificate generation for liveness checking algorithms, which remains another
open research challenge. Another direction concerns the degree of trust we can place
in the certificate checker. Ultimately, achieving a fully verified certificate checker
would ensure an end-to-end correctness in the verification process, further increasing
confidence.

Beyond increasing trust in model checkers, certificates have broader applications. An
ongoing industry collaboration explores the integration of certifying model checkers as
hammers in interactive theorem provers such as Isabelle [273] via Sledgehammer [274].
This entails the theorem prover encoding an open proof as a model checking problem,
invoking a model checker, and lifting the certificate back into the theorem prover.

11.6 Appendix
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Figure 11.5: Comparison of Kissat and CaDiCaL, and the additional overhead incurred
by checking DRAT and LRAT proofs respectively. MiniSAT is included as a baseline.

11.6.1 Base of Trust

So far, we have not discussed the base of trust of our certification approach. Besides
the correctness of Theorem 11.2 and the implementation of Def. 11.1 in our certificate
checker CERTIFAIGER, we also trust the SAT solver, in our case Kissat [30]. We can
remove the SAT solver from the base of trust by additionally checking the DRAT [42]
proof of unsatisfiability generated by the solver. In that case, we only trust the checker
verifying the DRAT proof. However, even when using an unverified and efficient
implementation such as DRAT-trim, proof checking can incur a significant overhead.
Therefore, the LRAT proof format [43] which includes annotations to make proof
checking more efficient has been developed. Currently the most efficient SAT solver
which can produce LRAT proofs is CaDiCaL [4]. Figure 11.5 compares the two
SAT solvers and the additional overhead incurred when also checking the proofs of
unsatisfiability using DRAT-trim and LRAT-trim respectively.

11.6.2 SAT Solving Techniques

The effectiveness of our certification approach heavily relies on the efficiency of the
underlying SAT solver. Recent advances in SAT solving techniques have made tackling
formulas, encoding circuit structures in general, and checks as defined by Def. 11.1
specifically, significantly more efficient.

We focus on two techniques: Clausal Congruence Closure [1] and Clausal Equiva-
lence Sweeping [1]. Clausal congruence closure extracts gate-level information from a
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Figure 11.6: Comparison of the performance of Kissat and CaDiCaL with and without
the Clausal Congruence Closure and Clausal Equivalence Sweeping techniques.

given CNF formula, thus reconstructing the original circuit structure to a certain extent.
It then computes the congruence closure of the gate structure. This alone allows the
SAT solver to instantly solve equivalence checking problems for isomorphic circuits,
which is particularly relevant as the Reset and Transition checks in Def. 11.1 are very
similar in structure to such equivalence checking problems if the witness circuit encodes
just an inductive invariant, without adding additional sequential behavior.

Clausal Equivalence Sweeping implements the well-known circuit-level reasoning
technique of SAT Sweeping at the CNF level. The original SAT sweeping algorithm
recursively establishes equivalences between gates, by initializing a set of candidates
using random simulation, and then calling an external SAT solver to prove equivalences.
In Clausal Equivalence Sweeping, these steps are performed entirely at the CNF level,
by extracting locally connected SAT formulas and using a simpler internal SAT solver
to solve them.

So far Kissat and CaDiCaL are the only solvers implementing these techniques. The
importance of these techniques to the task of checking witness circuits is illustrated in
Figure 11.6.
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Chapter 12

Conclusion and Future Work

We posed three research questions in the introduction. Each of them can be answered
conclusively by the resounding success of the Hardware Model Checking Competition
2024 alone:

RQ1 Without the circuit-specific optimizations in our SAT solver, certificate validation
would not have been nearly as efficient.

RQ2 The competition saw the highest number of participants to date, all of them fully
certified. The top-performing model checker outperforms the previous state of
the art, even when including certificate validation time.

RQ3 The introduction of our certification approach to the competition conclusively
validated its practicality. It established a standardized format adopted by many
model checkers, laying the foundation for fair and correct comparison of model
checking techniques and their implementations.

Nine model checkers participated in the 2024 competition. Since most are composed
of multiple engines, the number of distinct model checking algorithms was even higher.
All of them produced fully certified results. This highlights the utility and applicability
of our certification framework from the standpoint of model checking developers. The
outstanding performance of the top solvers underscores the low overhead of certificate
generation. Even more significantly, the remarkably low cost of certificate validation
demonstrates the practical viability of our approach. These results clearly demonstrate,
both to the academic community and to industry, that certification in model checking
is not only possible—but practical. In doing so, we conclusively answered Research
Question 2: how to increase trust in model checking.

This success would not have been possible without other foundational work on SAT
solving. Validating model checking certificates itself is a highly specific application
of SAT solving. Not only do the formulas all share a circuit structure, but the three
checks establishing simulation are structurally very similar to combinatorial miters. The
implementation of clausal congruence closure and SAT sweeping as integral components
of the SAT solver has been crucial to the efficiency of certificate checking. These circuit-
specific techniques improve not only certificate checking but also the performance of any
model checker using a SAT solver that implements them. Furthermore, the development
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of LRAT proof logging and its mature implementation in CaDiCaL not only improves
trust in the certification process but can also be used to reduce certificate validation time.

More relevant to model checking itself, we identified key challenges that the prominent
IC3 algorithm poses to incremental SAT solving. Nearly every model checker in the
competition employed at least one IC3 engine, and several of them use CaDiCaLl. We
extended the incremental SAT interface to better support large numbers of temporary
clauses, enabling more efficient solving and simplifying solver usage. This extension
has since been integrated into our backbone extraction tool, CadiBack, where it plays a
critical role in ensuring performance. It has also been adopted by the wider community
and may become part of the next version of the standardized interface for incremental
SAT solving. These are among the aberrant applications we identified and improved
SAT solving for while addressing Research Question 1.

CadiBack was initially developed to meet the needs of one of the authors. Since then,
it has been widely adopted by the model counting community and is now a standard
preprocessing component in many solvers. We further used it to enhance ternary
simulation, a foundational technique in model checking, which we generalized into cube
simulation. We formalized cube simulation as an instance of abstract interpretation and
used it to generalize sophisticated preprocessing methods such as phase abstraction and
temporal decomposition. The certificate constructions we proposed and proved complete
incidentally verify not only the original methods but also our extended techniques.

The diverse set of certificate constructions detailed across multiple publications [9, 10,
12, 13, 253] —together with their open-source implementations in our model checker—
serve as a comprehensive reference for anyone developing a hardware model checker,
be it with or without certification.

Finally, we emphasized the essential role competitions play in scientific progress,
thus answering Research Question 3. Hosting such competitions requires significant
resources: both the computational capacity to run all participating tools on an even
playing field and the human effort to set up, execute, and evaluate results. Nevertheless,
competitions are crucial for any field which features any degree of practical applicability.
They provide an objective proving ground for proposed ideas, beyond what any single
group of researchers can achieve.

The SAT competition has long advanced not only solver efficiency but also the
widespread adoption of certification. By introducing certificates to the hardware model
checking competition, we took a decisive step in bringing it to the same standard. Not
only will the trust in the results of the competition be significantly improved going
forward, but by standardizing a unified format for all hardware model checkers, their
use has been made simpler and safer.

During my doctoral studies, I not only contributed to theoretical foundations but also
invested significant effort into developing robust tools for the community. Foremost
among these is the certificate checker used in the Hardware Model Checking Competition
2024. We also published tools that implement the same certificate validation checks for
two additional formats: Btor2 for word-level model checking, and dimspec for hardware
designs not easily expressed in the AIGER format. In addition, my contributions to
CadiBack and CaDiCaL will continue to serve the community for years to come.
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Future Work

Several promising directions for future research emerge from this work:

Incremental Backbone Extraction. Currently, our backbone extraction tool [6] is
separate from our SAT solver [4]. However, both share a largely similar API. Integrating
backbone extraction into CaDiCal would simplify its use across a wider variety of
applications. Moreover, this integration would add support for incremental backbone
extraction. Specifically, backbones under assumptions may pose interesting challenges
and open up new applications.

Spatial IC3. We plan to explore new algorithmic frameworks such as spatial IC3.
Unlike traditional IC3 [34], which progresses temporally, spatial IC3 additionally parti-
tions the circuit into spatial frames. These frames can leverage diverse representations
of the transition relation—such as those produced by preprocessing techniques—to
improve specialization and scalability. The algorithm also mines invariants at the frame
boundaries as a side product.

Certificates with Scalable Complexity. Our certificates are currently checked in
coNP [9]. However, as with SAT, they could be annotated with additional hints to reduce
the complexity of certificate checking. For instance, by embedding the LRAT proof [43]
produced by a SAT solver into the certificate. On the other hand, certificates can be
seen as guides for solving the model checking problem itself. From this perspective,
certificates merely act as hints that enable more efficient checking, even if they do not
reduce the asymptotic complexity.

Certificate Shrinking. In related fields, smaller certificates have been shown to offer
multiple benefits [4, 40, 149]. In addition to reduced storage requirements, they are
often faster to check and more useful for downstream processing. A promising approach
is to utilize SAT solver proofs to automatically identify the essential components of a
certificate. These reduced certificates may, in turn, help model checkers construct even
smaller certificates.

Model Checking Hammers for Interactive Theorem Provers. We aim to develop
model checking hammers for interactive theorem provers such as Isabelle [305] and
Lean [306]. These hammers would allow theorem provers to identify subgoals express-
ible as model checking problems and invoke an external model checker. The resulting
certificate could then be lifted into the prover to close the corresponding proof.
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Differential Proof. Designing complex systems is typically an incremental process,
with changing requirements and optimization goals. After successfully verifying a
design, even a small change requires to re-verify the entire system from scratch. Lever-
aging an existing proof for a design with a small delta to accelerate verification could
enable significantly faster iteration during the design process.

Unified View on Assertion Mining. In our chosen formalism, model, property, and
certificate are essentially the same. This unified perspective allows us to extract implied
assertions directly from certificates. Assertions deemed relevant by some metric may be
presented to the designer to aid in future design iterations.

Liveness Certification. From a competition perspective, we propose extending manda-
tory certification to the liveness track of the Hardware Model Checking Competition [20].
Achieving this will require designing a practical and trustworthy certificate format tai-
lored to liveness properties.

Certifying Word-Level Model Checking. Our certification approach is largely ag-
nostic to the underlying theory [13], that is, the certificate checks can be performed
by any theory solver capable of describing the system. The most immediate example
is the use of bit-vector solvers for word-level model checking. However, word-level
model checkers employ different techniques [307], that require specialized certificate
constructions. Furthermore, the lack of proof-producing SMT solvers makes this a
challenging open problem.

Extension to Software Verification. We aim to generalize our certification framework
to software verification [297]. Enabling certified correctness for software systems would
significantly broaden the impact of our methods beyond the hardware domain.

Extension to Automated Planning. The field of automated planning [18, 308] shares
strong conceptual ties with model checking. In hardware verification, system models
are typically provided in semantically clear formats. In contrast, accurately describing
the environment in planning is more difficult. We propose leveraging the simulation-
based invariants from our certification framework to explain and certify environment
encodings. This approach would be particularly valuable in scenarios where generative
Al—such as large language models—interfaces with automated planners.

Collectively, these directions aim to enhance the trustworthiness, efficiency, and utility
of symbolic verification and certification methods across a wide range of domains.
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