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Abstract. Designing interesting and challenging levels for a puzzle
game is a very difficult and time consuming task. It is often possible
to develop random puzzle generators that can produce solvable levels.
However, in order to obtain appealing levels, usually a human designer
needs to be involved. In this paper we propose a new generic method
for assisting human designers to create solvable levels for a puzzle game
by using Automated Planning. We will demonstrate our method on the
well-known Japanese puzzle game Sokoban.
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1 Introduction

Sokoban is a puzzle game that originated in Japan. It was invented by Hiroyuki
Imabayashi, and published in 1982 by Thinking Rabbit [11]. The word Sokoban
is Japanese for warehouse keeper. Each puzzle represents a warehouse, where
boxes are randomly placed. A warehouse keeper (the player) has to push the
boxes around the warehouse so that all boxes end up in designated goal positions.

The game of Sokoban is a complicated computational problem. It was first
proven to be NP-hard [6] and later PSPACE-complete [3]. While the rules are
simple, even small levels can require a lot of computation to be solved. Design-
ing interesting solvable levels is also challenging and a subject of academic
research [5,14,15,18].

Automated planning [8] is one of the central techniques in artificial intelli-
gence. The task of planning is to find a sequence of actions, i.e., a plan, that
transforms the world from a given initial state to a goal state, i.e., a state that
satisfies the given goal conditions. Planning is a very competitive research area
and there exist multiple high performance planning tools that are constantly
being developed and improved [16].

In this paper we will demonstrate how the power of automated planning tools
can be utilized to design a system that can generate challenging solvable puzzles
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and intelligently assist a human puzzle designer. To our best knowledge, this is
the first time, that automated planning has been used in this context.

We will demonstrate our technique on the example of Sokoban puzzles, since
the game is widely known and well studied. Nevertheless, the technique can be
used for any puzzle game that satisfies the following conditions:

— Single player. The game is played by a single player. There may exist helpful
or adversary agents in the game as long as their behavior is fully deterministic
and specified by simple rules.

— Finite and discrete game world. Each game state can be fully described with
finitely many finite domain variables.

— Deterministic gameplay. Random events or random outcomes of player
actions are not allowed.

— Full observability. There are no hidden or unknown elements that influence
the gameplay.

The rest of the paper is organized as follows. In the next section we will pro-
vide the preliminary definitions of automated planning and the rules of Sokoban.
Then we will review the related work in the area of procedural generation of
Sokoban levels. Following that we will describe our new method and our new
tool that implements it. Finally, we will present an evaluation of our tool.

2 Preliminaries

2.1 Automated Planning

As we already briefly stated in the introduction, planning is the task of finding a
plan (a sequence of actions) that transforms the world from a given initial state
to a goal state that satisfies the goal conditions. How to represent the world
states, goal conditions, and describe the set of possible actions is defined in this
Subsection.

Planning problems are modeled using the Planning Domain Definition Lan-
guage (PDDL) [9], which is based on the programming language LISP [21].
PDDL is a very rich language with many features, however, we will only require
a small subset of it which we will describe below.

The basic building blocks of PDDL are Objects and Types. Each object is of
a certain type. For example if we define a type “city” then we can define the
objects “Paris”, “London”, and “Madrid” of the type “city”. Another type could
be “person” and the objects of this type are for example “Alice” and “John”. In
PDDL we would express this using the following lines:

(:types city person - object)
(:objects
Paris London Madrid - city
Alice John - person

)
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In PDDL we can refer to objects using variables. Variable names always start
with a question mark “?” and each variable has a type. For example a variable
“c” of the type “city” would be declared as: (?7c - city).

Variables appear in Predicates, which are atomic statements that are used to
express certain conditions. For example, a predicate called “livesIn” could have
two parameters, one of the type “person” and one of the type “city”. In PDDL
we would declare this predicate as (1ivesIn 7p - person 7c - city) and it
would mean that an object of type “person” lives in an object of type “city”.
Using the predicate we can now declare facts about our objects by substituting
variables with objects of the proper type, for example:

(livesIn Alice Madrid), (livesIn John London).

The last building block of PDDL that we need are operators, which can
be intuitively understood as templates for actions. Actions change the world
state by modifying the truth values of predicates. An action a consists of a
name name(a), a set of preconditions pre(a) and a set of effects ef f(a). Both
preconditions and effects are sets of grounded predicates (predicates where all
variables are substituted by objects).

1. Preconditions represent the predicates that must be true in the given world
state in order to execute the action. We say that an action a is applicable in
a given world state s if and only if all predicates in pre(a) hold true in s.

2. Effects are used to update the world state after the action is executed. Positive
effects are predicates that will become true (unless they are already true) after
the action is executed. Negative effects are negated predicates (wrapped in
not) and they become false. All other predicates that are not involved in the
effects of the executed actions remain unchanged.

The following is an example of an action representing moving Alice form Madrid
to Paris:

(:action move-Alice-Madrid-Paris
:precondition (and
(livesIn Alice Madrid)
)
:effect (and
(not (livesIn Alice Madrid))
(livesIn Alice Paris)
)
)

The precondition is that Alice lives in Madrid and the effects are that Alice
does not live in Madrid anymore and she lives in Paris. If we wish to model all
possible movements for both Alice and John and the three cities, we would need
to write down 12 actions that are very similar to each other. A better solution
is to use the already mentioned operators, i.e., action templates. Operators look
like actions with the difference that they may have parameters and use predicates
with variables in the preconditions and effects. An operator for the move actions
would be declared as follows:
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action move
:parameters(?p - person ?from 7to - city)
:precondition (and
(livesIn ?7p 7from)
)
reffect (and
(not (livesIn 7p 7from))
(livesIn ?7p 7to)

)

A planner would then generate all the possible actions from this template by
substituting all the possible combinations of objects for the three parameters.
This process is referred to as grounding.

Now we have everything we need to fully describe a planning problem in

PDDL, which consists of the following elements:

G o=

set of used types

set of predicates

set of operators

list of all the objects in the problem together with their types

the initial state of the world in the form of grounded predicates (predicates
with objects substituted for all variables)

the goal conditions in the form of grounded predicates

When describing a planning problem in PDDL we split the description into

two files: domain.pddl and problem.pddl. The first file, domain.pddl, contains
the types, predicates, and operators. The rest is written in the problem.pddl file.
For our moving example the domain.pddl would be:

(define (domain moving)

(:requirements :strips :typing)
(:types city person - object)
(:predicates
(livesIn ?p - person 7c - city)
)
(:action move
:parameters(?p - person 7from 7to - city)
:precondition (and
(1ivesIn ?p ?from)
)
reffect (and
(not (livesIn ?p 7from))
(l1ivesIn ?7p ?7to)

)
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and the problem.pddl would contain:

(define (problem moving-1)
(:domain moving)
(:requirements :strips :typing)
(:objects
Paris London Madrid - city
Alice John - person

)
(:init
(livesIn Alice Madrid)
(livesIn John London)
)
(:goal (and
(livesIn Alice Paris)
(livesIn John Paris)
))

)

The domain file describes the general planning problem of moving people
between cities, while the problem file describes the concrete problem instance of
moving John and Alice from London and Madrid to Paris. An automated planner
would now take these two files and find a plan, which in this case would consist
of two actions: move-alice-madrid-paris and move-john-london-paris.

Since automated planning is a very competitive research field, it is easy to
find well performing planning tools that are freely available on the internet. One
way to choose a good planner is to look at the International Planning Compe-
tition website [16], where state-of-the-art planners are evaluated and compared
in regular time intervals.

2.2 Sokoban

Each Sokoban level consists of a two dimensional rectangular grid of squares (see
Fig. 2 for an example). If a square contains nothing it is called a floor. Otherwise
it is occupied by one of the following entities (see Fig. 1):

— Wall. Walls make up the basic outline of each level. They cannot be moved
and nothing else can be on a square occupied by a wall. A legal level is always
surrounded by walls.

— Boz. A box can either occupy a goal or an otherwise empty square. It can be
moved in the four cardinal directions by pushing (see below).

— Goal. Goals are treated like floors for the most part. Only when each goal
is occupied by a box the game is completed. In a legal level the number of
goals matches the number of boxes. For the sake of simplicity, we will call a
square that is either a goal or a floor square free since the worker and boxes
can enter both.
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Fig. 1. The four kinds of tiles that make up a Sokoban warehouse: Wall, Box, Goal,
and Worker (from left to right).
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Fig. 2. A simple Sokoban level in its initial (left) and solved (right) state. The solution
to this level consists of two steps: MOVE-RIGHT and PUSH-RIGHT.

— Worker. There must be exactly one worker in each level. It is the only element
that is directly controlled by the player.

There are two kind of moves in Sokoban:

1. Mowve the worker. The worker can be moved in the four cardinal directions
(up, down, left, right) by one square in each step. This movement is directly
controlled by the player. The worker may be moved onto an adjacent free
square.

2. Push a box. The worker can push a box in a certain direction if the square
behind the box is free. To be precise, there are always three squares (A,B,C)
involved in a push move. The first (A) contains the worker, the second (B)
contains a box and the third one (C) is a free (empty or goal) square. These
three squares must form a single line of adjacent squares. After the push is
performed, the box occupies the free square (C) and the worker occupies the
square formerly occupied by the box (B).

The goal of the game is to find a solution, which is a sequence of moves and
pushes. Executing a solution leads to every box ending up on a goal. It does not
matter which box ends up on which goal. A level may have no solution. Such a
level is undesirable and should not be presented to a human player for obvious
reasons.

3 Related Work

Most academic work on Sokoban focused on developing efficient solvers that
find short, but not necessarily optimal solutions. Most are based on performing
a heuristic search on the state space of the Sokoban puzzle. To make the search
efficient multiple domain specific enhancements are used. Most notably, heuris-
tics that recognize if the current state is already unsolvable and abort the branch
of the search accordingly. The first solver to implement these techniques was
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Rolling Stone [13] followed by JSoko', YASS? Takaken® and GroupEffort [7].
Botea et al. [2] used automatic planning but instead of a simple encoding to
planning (see Sect.4.1) they decomposed the warehouse into a set of different
rooms connected by tunnels. A plan that successfully moves the boxes between
the rooms is translated to actual box pushes and player movements afterwards.

Another topic related to our work was investigated more recently. Assess-
ing the difficulty of a given level is important for designing new ones. Humans
enjoy problem solving, but only if the problem is of adequate difficulty. Jarusek
et al. [12] conducted an empirical study on how easily humans solve a set of
Sokoban levels. They collected over 700 h of test data from different participants
to establish a ground truth and presented a set of nontrivial metrics trying to
predict the collected data. Ashlock et al. [1] observed artificial agents that were
the result of an evolutionary learning process on randomly generated Sokoban
levels. Due to the limited capabilities of the agents the metrics they present are
not useful to predict the difficulty of harder levels. Van Kreveld et al. [20] devel-
oped a metric that is not specific to Sokoban but supposed to be generic enough
to capture the difficulty of different grid-based puzzle games.

The first published Sokoban level generator algorithm is by Murase et al. [15].
Their approach has three phases.

1. Generate random levels. In this phase predefined templates of rooms are
placed randomly over a prototype level consisting of only walls. The tem-
plates are placed such that they are connected by passages. Then boxes and
goal tiles are placed randomly.

2. Filter out unsolvable levels. Phase one may generate levels that have no solu-
tion. According to the authors this happens in around half of the cases. In
this phase they use a Sokoban solver to try to find a solution and filter out
unsolvable levels.

3. FEwvaluation. In this phase the levels are automatically evaluated to determine
whether they are interesting. The evaluation is based on simple metrics such
as the length of the solution, the number of changes in directions when push-
ing a box and the number of detours.

The complexity of this approach is dominated by phase two — filtering
out unsolvable levels. This step requires solving Sokoban problems, which is
a PSPACE-complete problem [4].

The approach of Taylor and Parberry [18] is similar to Murase et al. in that
they first generate a random level based on placing templates of walls. Then
they randomly place goals with boxes on them in the rooms. At this point they
actually have a solved Sokoban puzzle. In the following stage they “unsolve” the
level by doing reverse Sokoban moves, i.e., pulling boxes away from the goals.
The aim of this stage is to reach a state that is far as possible from the solved
state. They do this by running an iterative deepening search of the state space.

! https://www.sokoban-online.de/ .
2 https://sourceforge.net /projects/sokobanyasc/.
3 http://www.ic-net.or.jp/home/takaken/e/soko/index.html.
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The complex part of this algorithm is the search for the starting state in the
second stage. The process is very memory intensive, since all the visited states
have to be kept in memory in order to avoid looping. On the other hand, the
algorithm has the anytime property, i.e., it can be stopped at any time to return
a valid solution, however, letting it run longer will yield a better solution.

In [19] an auditory Stroop test was performed to compare the engagement
of players while playing hand-crafted Sokoban levels against levels generated by
the approach of Taylor and Parberry [18]. The experiment showed that players
found procedurally generated levels equally interesting to hand-crafted levels.
This demonstrates that there is entertainment value in procedurally generated
puzzles.

Kartal et al. [14] propose a Monte Carlo tree search (MCTS) based Sokoban
level generator. They formulate puzzle generation as an MCTS optimization
problem such that the puzzles are generated through simulated gameplay. The
search process starts with a level full of walls except for one tile, which contains
the player in its start position. The following actions are possible at each node
of the search tree:

1. Remove a Wall. Choose a wall that is adjacent to an empty tile and remove
it. By only removing walls adjacent to empty tiles they can ensure that no
unreachable rooms are generated.

Place a Boz. Choose an empty tile and put a box there.

3. Freeze the Level. With this action the search is changed to play mode. Remov-
ing walls and placing boxes is not allowed after this action. The current posi-
tions of walls, boxes and the player constitute the starting state of the level
(without any goal positions, they will be defined later).

4. Movwe the Player. Simulate play by executing random legal moves of the player,
i.e., walking around and pushing boxes.

5. FEwvaluate the Level. This is the final action of each search path. The current
positions of the boxes are declared to be the goal locations and the quality of
the generated level is estimated based on data driven evaluation functions.

N

Similarly to the previously presented method, this generator also has the
anytime property. It is capable of producing a wide variety of levels thanks
to its stochastic nature. Nevertheless, like all the presented approaches, it has
its limitations and the generation of large puzzles remains a bottleneck as the
number of possible level designs grows exponentially.

An up-to-date survey on procedural puzzle generation [5] gives an overview
of the methods for generating puzzles for many games similar to Sokoban.

4 Puzzle Generation as Planning

Our proposed approach is based on the idea of using automated planners to
generate solvable Sokoban levels. This means that our only task is to express
the problem of level generation in PDDL and the rest is taken care of by the
planning tool. We will formulate the problem of Sokoban level generation as an
extension of Sokoban level solving.
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4.1 Sokoban Solving as Planning

Using automated planning to solve Sokoban is not a new idea by any means.
Actually, Sokoban is one of the standard benchmark problems used to evaluate
new planning algorithms and tools in many academic papers and the inter-
national planning competition [16]. Nevertheless, in order to keep this paper
self-contained, we will present a simple PDDL encoding of Sokoban in this Sub-
section.

To encode Sokoban solving we will only require one kind of objects — squares.
We will have one object of type square for each location in the level that is not
a wall. Additionally, we will need the following predicates:

Wa”

1. (above 7a 7b - square) meaning that square“a” is above square “b”

2. (left_of 7a 7b - square) meaning that square “a” is on the left side of
square “b”

3. (box_at 7a - square) meaning that there is a box at square “a”

4. (worker_at 7a - square) meaning that there is the worker at square “a”

To complete the domain description we need to specify the operators. We will
need two kinds of operators — move and push and we will need 4 of each for the
4 cardinal directions (up, down, left, right). Fist, we will describe the move-up
operator:

(:action move_up
:parameters (7from 7to - square)
:precondition(and
(above 7to 7from)
(worker_at 7from)
(not (box_at ?to))
)
:effect (and
(not (worker_at ?7from))
(worker_at ?7to)

)

The operators for moving down, left, and right are analogous, they
only differ on the line with (above 7to 7from) where move-down has
(above 7from 7to), move-left has (left_of ?7to ?from) and move-right has
(left_of 7from 7to). Next we describe the push-up operator:

(:action push_up
:parameters (7from 7to 7box_to - square)
:precondition(and
(above ?7to 7from)
(above 7box_to 7to)
(worker_at 7from)
(box_at 7to)
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(not (box_at 7box_to))
)
:effect (and
(not (worker_at 7from))
(worker_at 7to)
(not (box_at ?7to))
(box_at 7box_to)

)

Like in the case of move operators, the other three push operators (push down,
left, and right) only differ on the lines with the “above” predicates.

What remains is to specify the initial state and the goal conditions. For the
initial state we need to declare the following predicates:

1. (above a b) for each pair of non-wall squares such that “a” is above “b”.

2. (left_of a b) for each pair of non-wall squares such that “a” is on the left
side of “b”.

3. (box_at a) for each square “a” that contains a box.

4. (worker_at a) for the square “a” that contains the worker.

As for the goal conditions, we only need to specify that the goal squares must
contain a box:

1. (box_at a) for each square “a” that contains a goal.

An example of a Sokoban level and its encoding in given on Fig. 3.

(:objects
.. s11 s12 s21 s31 s32 s33 s41 - square
= )
/"\ (:init
... (above s11 s21) (above s21 s31)
(above s31 s41) (left_of si11 s12)

(left_of s31 s32) (left_of s32 s33)
(box_at s21) (box_at s32) (worker_at si12)

~

(:goal (and
(box_at s41) (box_at s33)

))

Fig. 3. A Sokoban level (left) and its encoding in PDDL (right)

4.2 Level Creation as Planning

As we already mentioned in the introduction, our generator is meant to assist
a human designer and not just generate fully random levels (as is the case in
the related work presented in Sect.3). Therefore we allow the user to specify
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the size of the puzzle by defining the outer walls. The goal positions are also set
by the designer. Additional walls, boxes and even the worker position may be
defined as well. Lastly, the designer specifies which of the remaining free squares
may contain a wall, a box, a worker, or some combination of the three. The last
thing to define is the number of walls and boxes to be added to the puzzle. If no
worker position has been specified in the input then the worker will be added
automatically. We will refer to this input as a level template. Figure 4 contains an
example of a level template, the corresponding starting puzzle and final puzzle.

p sokogen 1 2 0 // add 1 wall and 2 boxes, do at least O pushes

#HitH# // symbols: # - wall $ - box

#2.# // @ - worker . - goal

#OO### // + - worker on goal * - box on goal
#.333# // The numbers specify which tokens can be placed:

# 333# // 0 - any 3 - box 6 - wall or box
#2224 ## // 1 - worker 4 - worker or wall

#itH# 2 - wall 5 - worker or box

Fig. 4. A level template file for our Sokoban puzzle generator (top), the starting puzzle
(down left) and the final solvable level (down right).

Transforming a level template into a solvable level will be task of the auto-
mated planner. In order to do this we must model the problem in PDDL. The
PDDL model is an extension of the model used for solving Sokoban puzzles that
we described in the previous Subsection. We will add four new operators:

1. Add wall. This operator adds a wall to one of the free squares that is allowed
to contain a wall according to the level template.

2. Add boz. Like the “add wall” operator, but for adding a box.

Add worker. Like the previous two but adds the worker.

4. Start playing. This operator means that we transition from the level creation
phase to the playing phase of the planning problem. No more walls, boxes or
workers can be added after this action is executed. Move and push actions
are not allowed to happen before this action.

@
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We also need to modify the goal conditions. For Sokoban solving we only
required that all goal positions contain a box. Now we also require that the
specified number of walls and boxes was placed. To model this we introduce two
new types: wall and box. Then we declare as many objects of both types as we
need to add according to the level template. For example, if we need to add
3 walls and 5 boxes, then 3 objects of type wall and 5 objects of type box are
declared. Then with the help of two new predicates: (wall_placed 7w - wall)
and (box_placed ?b - box) we can encode that all the additional walls and
boxes have been placed.

In the initial state we must specify which squares may contain additional
walls, boxes, or the player. For this purpose we introduce three new predicates:
(opt_wall ?s - square) for walls, (opt_box ?s - square) for boxes, and
(opt_worker 7s - square) for the worker.

To implement the start playing operator we will define two new predicates:
(making_level) and (playing) to represent the current phase of the puzzle
generation. The (making_level) is added to the initial state of problem defini-
tion, since we always start in this phase.

Now that we have defined all the new predicates we can model the four new
operators in PDDL. We start with operators to place walls and boxes.

(:action place_wall

:parameters(
7w - wall ?to - square

)

:precondition(and
(making_level)
(opt_wall 7to)

(not (wall_placed ?7w))
(not (wall_at ?7to))
(not (box_at 7to))

)

:effect(and
(wall_at ?7to)
(wall_placed 7w)

)

)

(:action place_box

:parameters(

?b - box 7to - square

)

:precondition(and
(making_level)
(opt_box ?7to)

(not (box_placed 7b))
(not (wall_at ?7to))
(not (box_at 7to))

)

:effect(and
(box_at 7to)
(box_placed 7b)

)

)

The “place worker” and “start playing” are defined next. Note, that “place
worker” also changes the phase to playing. This way we can ensure that the
worker is added last and only once. Thanks to this property the operators to
place the walls and the boxes do not need to check whether a worker has been
placed on the square where they wish to place their item.

(:action place_player_and_start
:parameters(?to - tile)
:precondition (and

(:action start_play
:parameters ()
:precondition(and
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(making_level) (making_level)

(opt_player ?7to) )

(not (wall_at 7to)) :effect(and

(not (box_at 7to)) (not (making_level))
) (playing)
:effect(and )

(player_at 7to) )

(not (making_ level))

(playing)

)
)

Lastly, the move and push operators from the Sokoban solving domain need to
be slightly updated. The predicate (playing) must be added to preconditions.
With this we have described a correct and complete encoding of the Sokoban
puzzle generation into PDDL. However, there is one small issue we need to
address.

Planners always try to find short plans. This has an unpleasant consequence
for our problem. The planner is motivated to place the walls and boxes in such
a way, that the generated puzzle can be solved with as few moves and pushes
as possible. This means, that the generated levels tend to be very easy to solve.
In order to address this issue, we modeled a mechanism, that enforces a certain
minimum amount of pushes in the solve phase. This value can be specified by
the puzzle designer as the third parameter on the “p line” in the level template
(see Fig.4). This is modeled by adding a counter to the push operators, that is
increased with each push action. Then in the goal conditions we can require that
the counter reaches the required value.

For more details refer to the complete domain PDDL file available in the
project’s repository?. The repository also contains the tool that generates the
PDDL problem files from a given level template.

4.3 Comparison to Related Work

Our method bears the most similarity to the approach of Kartal et al. [14]
(see Sect.3). They formulate the puzzle generation as an MCTS optimization
problem, while we model it as a planning problem. They start with a level that
contains the worker and is otherwise full of walls and then remove some walls
and add some boxes. We start with a partially built level that already contains
all the goals and then we add additional walls, boxes and the worker. Then both
approaches have a special action that transitions the search into the playing
mode. Finally, in our approach we try to solve the level and backtrack to the
level building phase if it is not solvable. In Kartal et al. [14] random moves are
executed for some time and then the reached state is declared to be the goal
state.

4 https://github.com/biotomas/sokoplan /blob/master/SokoGen /domain.pddl.
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4.4 Generalization to Other Puzzles Than Sokoban

It easy to use our puzzle generation concept for other puzzles as well. In order to
do that one must only write the appropriate PDDL domain file and a generator
for the PDLL problem files. The domain file is usually written by hand and
problem files are generated by a script or a small program, however, both can be
written by hand. In any case, the effort is very low in comparison to designing
and implementing a dedicated puzzle generator for a specific puzzle as is done in
related work. Another advantage of our concept is, that as the state-of-the-art
planners evolve and their performance improves, our puzzle generator improves
with it automatically.

5 Experimental Evaluation

Our Sokoban puzzle generation tool is available online at GitHub®. The reposi-
tory contains everything you need to build and use our tool and also to replicate
the experimental evaluation we present in this section.

5.1 Setup

As our tool is based on planning, we will obviously need a planner. Any planner
that supports PDDL® would work, but based on some preliminary evaluations we
settled on using the well established state-of-the-art planner FastDownward [10]
with the LAMA 2011 [17] configuration.

We generated 300 level templates to use as benchmarks (more on how is
described in the next Subsection) and we gave the planner a time limit of 1 min
to find a solvable puzzle. We run our experiments on a computer with an Intel(R)
Core(TM) i7-7800X CPU @ 3.50 GHz processor and 64 GB of main memory. The
used operating system was Ubuntu version 5.8.0-26-generic.

5.2 Benchmark Instances

All of the 300 level templates are based on 10 base templates, which we designed
by hand (see Fig.5). To create the benchmark templates of various complexities
we reduced the number of goals in the base templates to a certain number.
A benchmark template of complexity level z is defined as a template with x
goal locations and the objective to add x walls and = boxes. We generated
templates of complexity levels 1,2,...,6. We created 5 templates for each of
the 6 complexity levels and each of the 10 base templates, hence the 300 total
benchmark templates.

To create a template of complexity level x from a base template we first mark
each floor square as a potential position for adding any (wall, box, or worker)
object. Then we randomly remove goal squares until exactly x goal squares

5 https://github.com/biotomas/sokoplan.
5 All available academic planners support PDDL.


https://github.com/biotomas/sokoplan

438 T. Balyo and N. Froleyks

) AN
AN
¢
N 2\ \kxjf N \
kx/ka ka\xJ Y PR \>x
XXX X

)

>x<( YN

A AN NS AW AYC) AN I)
>><<k><ka/ \xJ\xkaJ >x<kaka \XJka k><ka/>><<

) AN

Y Y
AN AN AN ANNNASN AN AN AN AL
\xJ\xkaJ A kakakakaka kakakakx/ka

Fig. 5. The 10 base templates we used to generate our 300 benchmark level templates.
The name of the base templates are (top left to bottom right): O, L, U, H, XX, X, B,
I, I, and Pi.
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remain. An example of generating a template of complexity level 4 from a base
template follows:

base temp. p sokogen 4 4 4 // objective:

HitHi# HitH#H // add 4 walls and 4 boxes
#...# #. # // do 4 at least pushes

#. .# # 0.# //

# # HERE =>  HOROR#HH // symbols:

##  # #0#000 # /7 # - wall

#.. . .# #. 00. # // . - goal

HHHHHARHS HHHHHARH // 0 - add any object

Admittedly, these benchmarks are not exactly like the level templates a
human designed would use. A human designer would start with a level tem-
plate and then modify it after seeing the level produced by the tool. They would
perform several iterations of these steps until a satisfactory level has been found.
Nevertheless, we used the approach described above since we needed to generate
a large number of templates of various sizes and complexity levels. However,
we believe the generated templates are still representative enough to perform a
meaningful experimental evaluation of our tool.

5.3 Experimental Results

The results of the experimental evaluation are presented in Table 1. Not solving
a level template can either mean that it is impossible to place the given amount
of walls and boxes such that a solvable level is created or that the planner could
not find a solution in the given time limit (of 1min). Unfortunately, in most
cases, we cannot distinguish between these two scenarios, since planners are not
very good at proving non-existence of plans.

For most of the base templates we could solve around 20 of the 30 level
templates, except for X and B, which seem to be too tight to add more than
2 walls and 2 boxes in most of the cases. On the large base templates (XX, II,
and Pi) we failed to solve most of the higher complexity templates. We believe
that this is not due to the not existence of solutions, rather it is caused by the
inability of the planner to find a solution within the given time limit. We could
add 6 boxes and walls only for base templates U and I, which with 18 and 20 free
squares represent middle sized levels. This seems to be the sweet spot between
being to tight to place enough objects and too large to find a solution within
the time limit.

Overall, the experimental evaluation showed that our approach works and
we can rapidly generate levels of various shapes and complexities.
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Table 1. The table contains experimental results on our benchmarks grouped by base
templates and complexity levels. The first column contains the names of the base
templates, see Fig.5 for their definitions. The values in the second column are the
number of free squares in the corresponding templates that can be used to place walls,
boxes and the player. Columns 3 to 8 contain the number of solved instances within
a time limit of 1 min for each complexity level. The final column contains the total
number of solved instances within 1 min across all complexity levels.

Base Free Solved for Complexity Level Total

Template Squares 1 2 3 4 5 6 Solved
O 10 5 5 5 5 0 0 20
L 12 5 5 5 5 1 0 21
U 18 5 5 5 2 1 1 19
H 20 5 5 5 0 2 0 17
XX 30 5 5 5 1 1 0 17
X 18 3 3 1 1 0 0 8
B 9 5 5 0 0 0 0 10
I 20 5 5 4 3 2 1 20
1T 28 5 5 3 4 0 0 17
Pi 35 5 5 5 1 0 0 16

6 Conclusion

We presented a method to assist human level designers to generate solvable
Sokoban puzzles using automated planners. Our method has several advantages.
Firstly, it based on a very generic principle (using planners) so it can be easily
modified and used to generate puzzles other than Sokoban. Secondly, it is using
a constantly evolving search technology (automated planning) so the generator
will automatically improve with time as planners get more and more performant.
Thirdly, it is very simple and easy to implement and customize.

6.1 Future Work

As for future work we would like to improve the performance of our tool by
tuning the PDDL encoding and adjusting the configuration parameters of the
used planner or evaluate other available planners.

We plan to develop a user friendly graphical user interface (GUI) for our
generator to make it easy to use for less technical users.

Finally, we would like to test our general method on other puzzles than
Sokoban. As described in the paper, this mostly only amounts to formulating
new PDDL models for the given puzzles.
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